This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework base...This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.展开更多
A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouce Wen differential model. It not only reflects the hysteresis force characteristics of the Bo...A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouce Wen differential model. It not only reflects the hysteresis force characteristics of the Bouce Wen model, but also determines its corresponding parameters. The simulation results show that restoring forceedisplacement curve hysteresis loop is very close to the real curve. The model trained can accurately predict the time response of system. The model is checked under the noise level. The result shows that the model has higher modeling precision, good generalization capability and a certain anti-interference ability.展开更多
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
Maximal and total skew information is studied. For symmetric pure states of two-qubit, they are closely related to the linear entropy, the concurrence, and the spin squeezing parameter. For a two-qubit system implemen...Maximal and total skew information is studied. For symmetric pure states of two-qubit, they are closely related to the linear entropy, the concurrence, and the spin squeezing parameter. For a two-qubit system implemented in three nonlinear interaction models with an external field, we give the exact state vectors and the expectation value (Sz) at any time t. Based on (Sz)2, we give the maximal and the total skew information and a condition in which the maximal and the total skew information can reach 1 and 2, respectively.展开更多
A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input vari...A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.展开更多
In this paper, two types of mathematical models are developed to describe the dynamics of large-scale nonlinear systems, which are composed of several interconnected nonlinear subsystems. Each subsystem can be describ...In this paper, two types of mathematical models are developed to describe the dynamics of large-scale nonlinear systems, which are composed of several interconnected nonlinear subsystems. Each subsystem can be described by an input-output nonlinear discrete-time mathematical model, with unknown, but constant or slowly time-varying parameters. Then, two recursive estimation methods are used to solve the parametric estimation problem for the considered class of the interconnected nonlinear systems. These methods are based on the recursive least squares techniques and the prediction error method. Convergence analysis is provided using the hyper-stability and positivity method and the differential equation approach. A numerical simulation example of the parametric estimation of a stochastic interconnected nonlinear hydraulic system is treated.展开更多
The adaptive control of nonlinear systems that are linear in the unknown but time-varying parameters are treated in this paper. Since satisfactory transient performance is an important factor, multiple models are requ...The adaptive control of nonlinear systems that are linear in the unknown but time-varying parameters are treated in this paper. Since satisfactory transient performance is an important factor, multiple models are required as these parameters change abruptly in the parameter space. In this paper we consider both the multiple models with switching and tuning methodology as well as multiple models with second level adaptation for this class of systems. We demonstrate that the latter approach is better than the former.展开更多
This paper presents a method of state estimation for uncertain nonlinear systems described by multiple models approach. The uncertainties, supposed as norm bounded type, are caused by some parameters' variations of t...This paper presents a method of state estimation for uncertain nonlinear systems described by multiple models approach. The uncertainties, supposed as norm bounded type, are caused by some parameters' variations of the nonlinear system. Linear matri~ inequalities (LMIs) have been established in order to ensure the stability conditions of the multiple observer which lead to determine the estimation gains. A sliding mode gain has been added in order to compensate the uncertainties. Numerical simulations through a state space model of a real process have been realized to show the robustness of the synthesized observer.展开更多
Both the maximal and the total skew information have been studied. For a three-qubit system implemented in three nonlinear interaction models, we give the exact state vector at any time t. Beused on this, we give the ...Both the maximal and the total skew information have been studied. For a three-qubit system implemented in three nonlinear interaction models, we give the exact state vector at any time t. Beused on this, we give the maximal and the total skew information. It is found that they have the same form and their evolution periods are dependent on the energy difference between the ground state and the second excited state in these models. The maximal skew information is always in the (Sx, Sv) plane. We give the condition for the occurrence of IGHZ}sy, in which they can reach the extreme values of 9/4 and 15/4, respectively. In three different decoherence channels, two kinds of information and the concurrence are calculated. We find that the phenomenon of the concurrence of sudden death occurs, but the above two kinds of information do not die suddenly. In the phase-damping channel, the two kinds of information will not be lost completely.展开更多
This paper proposes fuzzy model predictive control(FMPC)strategies for nonlinear interconnected systems based mainly on a system decomposition approach.First,the Takagi-Sugeno(TS)fuzzy model is formulated in such a wa...This paper proposes fuzzy model predictive control(FMPC)strategies for nonlinear interconnected systems based mainly on a system decomposition approach.First,the Takagi-Sugeno(TS)fuzzy model is formulated in such a way to describe the behavior of the nonlinear system.Based on that description,a fuzzy model predictive control is determined.The system under consideration is decomposed into several subsystems.For each subsystem,the main idea consists of the decomposition of the control action into two parts:The decentralized part contains the parameters of the subsystem and the centralized part contains the elements of other subsystems.According to such decomposition,two strategies are defined aiming to circumvent the problems caused by interconnection bet ween subsystems.The feasibility and efficiency of the proposed method are illustrated through numerical examples.展开更多
This paper focuses on the stability analysis of nonlinear networked control system with integral quadratic constraints(IQC) performance, dynamic quantization, variable sampling intervals, and communication delays. By ...This paper focuses on the stability analysis of nonlinear networked control system with integral quadratic constraints(IQC) performance, dynamic quantization, variable sampling intervals, and communication delays. By using input-delay and parallel distributed compensation(PDC) techniques, we establish the Takagi-Sugeno(T-S) fuzzy model for the system, in which the sampling period of the sampler and signal transmission delay are transformed to the refreshing interval of a zero-order holder(ZOH). By the appropriate Lyapunov-Krasovskii-based methods, a delay-dependent criterion is derived to ensure the asymptotic stability for the system with IQC performance via the H∞ state feedback control. The efficiency of the method is illustrated on a simulation exampler.展开更多
The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. ...The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems.展开更多
For a class of nonlinear systems whose states are immeasurable, when the outputs of the system are sampled asynchronously, by introducing a state observer, an output feedback distributed model predictive control algor...For a class of nonlinear systems whose states are immeasurable, when the outputs of the system are sampled asynchronously, by introducing a state observer, an output feedback distributed model predictive control algorithm is proposed. It is proved that the errors of estimated states and the actual system's states are bounded. And it is guaranteed that the estimated states of the closed-loop system are ultimately bounded in a region containing the origin. As a result, the states of the actual system are ultimately bounded. A simulation example verifies the effectiveness of the proposed distributed control method.展开更多
In order to design linear controller for nonlinear systems,a simple but efficient method of modeling a nonlinear system was proposed by means of multiple linearized models at different operating points in the entire r...In order to design linear controller for nonlinear systems,a simple but efficient method of modeling a nonlinear system was proposed by means of multiple linearized models at different operating points in the entire range of the expected changes of the operating points.The original nonlinear system was described by linear combination of these multiple linearized models,with the linear combination parameters being identified on line based on least squares method.Model Predictive Control,an optimization based technique,was used to design the linear controller.A sufficient condition for ensuring the existence of a linear controller for the original nonlinear system was also given.Good performance indicated by two simulated examples confirms the usefulness of the proposed method.展开更多
The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical...The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.展开更多
Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based o...Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters struc^tres. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system monitoring and diagnosis.展开更多
Based on the T-S model, the output regulation of nonlinear singularly perturbed systems via state feedback is discussed. It is shown that, under standard assumptions, this problean is solvable if and only if certain l...Based on the T-S model, the output regulation of nonlinear singularly perturbed systems via state feedback is discussed. It is shown that, under standard assumptions, this problean is solvable if and only if certain linear matrix equations are solvable. Once these equations are solvable, the state feedback regulator can easily be constructed.展开更多
In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation p...In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation performance is used to approximate the unknown nonlinear function in the system. The dynamic surface control (DSC) is used to design the controller, which not only avoids the “explosion of complexity” problem in the process of repeated derivation, but also makes the control system simpler in structure and lower in computational cost because only one adaptive law is designed in the controller design process. Through the Lyapunov stability analysis, all signals in the closed loop system designed in this paper are semi-globally uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the method is verified by a simulation example.展开更多
This paper develops a feedforward neural network based input output model for a general unknown nonlinear dynamic system identification when only the inputs and outputs are accessible observations. In the developed m...This paper develops a feedforward neural network based input output model for a general unknown nonlinear dynamic system identification when only the inputs and outputs are accessible observations. In the developed model, the size of the input space is directly related to the system order. By monitoring the identification error characteristic curve, we are able to determine the system order and subsequently an appropriate network structure for systems identification. Simulation results are promising and show that generic nonlinear systems can be identified, different cases of the same system can also be discriminated by our model.展开更多
This work deals with robust inverse neural control strategy for a class of single-input single-output(SISO) discrete-time nonlinear system affected by parametric uncertainties. According to the control scheme, in the ...This work deals with robust inverse neural control strategy for a class of single-input single-output(SISO) discrete-time nonlinear system affected by parametric uncertainties. According to the control scheme, in the first step, a direct neural model(DNM)is used to learn the behavior of the system, then, an inverse neural model(INM) is synthesized using a specialized learning technique and cascaded to the uncertain system as a controller. In previous works, the neural models are trained classically by backpropagation(BP) algorithm. In this work, the sliding mode-backpropagation(SM-BP) algorithm, presenting some important properties such as robustness and speedy learning, is investigated. Moreover, four combinations using classical BP and SM-BP are tested to determine the best configuration for the robust control of uncertain nonlinear systems. Two simulation examples are treated to illustrate the effectiveness of the proposed control strategy.展开更多
文摘This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.
文摘A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouce Wen differential model. It not only reflects the hysteresis force characteristics of the Bouce Wen model, but also determines its corresponding parameters. The simulation results show that restoring forceedisplacement curve hysteresis loop is very close to the real curve. The model trained can accurately predict the time response of system. The model is checked under the noise level. The result shows that the model has higher modeling precision, good generalization capability and a certain anti-interference ability.
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.
基金Project supported by the College Young Talents Foundation of Anhui Province,China (Grant No.2010SQRL107)
文摘Maximal and total skew information is studied. For symmetric pure states of two-qubit, they are closely related to the linear entropy, the concurrence, and the spin squeezing parameter. For a two-qubit system implemented in three nonlinear interaction models with an external field, we give the exact state vectors and the expectation value (Sz) at any time t. Based on (Sz)2, we give the maximal and the total skew information and a condition in which the maximal and the total skew information can reach 1 and 2, respectively.
基金supported by the National Natural Science Foundation of China (No.70471087)China Postdoctoral Science Foundation Funded Project(No.20080430929)Liaoning Province Education Bureau Foundation (No.20060106)
文摘A robust control for uncertain nonlinear systems based on T-S fuzzy model is discussed in this paper. First, a T-S fuzzy system is adopted to model the uncertain nonlinear systems. Then, for the system with input variables adopting standard fuzzy partitions, the efficient maximal overlapped-rules group (EMORG) is presented, and a new sufficient condition to check the stability of T-S fuzzy system with uncertainty is derived, which is expressed in terms of Linear Matrix Inequalities. The derived stability condition, which only requires a local common positive definite matrix in each EMORG, can reduce the conservatism and difficulty in existing stability conditions. Finally, a simulation example shows the proposed approach is effective.
基金supported by the Ministry of Higher Education and Scientific Research of Tunisia
文摘In this paper, two types of mathematical models are developed to describe the dynamics of large-scale nonlinear systems, which are composed of several interconnected nonlinear subsystems. Each subsystem can be described by an input-output nonlinear discrete-time mathematical model, with unknown, but constant or slowly time-varying parameters. Then, two recursive estimation methods are used to solve the parametric estimation problem for the considered class of the interconnected nonlinear systems. These methods are based on the recursive least squares techniques and the prediction error method. Convergence analysis is provided using the hyper-stability and positivity method and the differential equation approach. A numerical simulation example of the parametric estimation of a stochastic interconnected nonlinear hydraulic system is treated.
文摘The adaptive control of nonlinear systems that are linear in the unknown but time-varying parameters are treated in this paper. Since satisfactory transient performance is an important factor, multiple models are required as these parameters change abruptly in the parameter space. In this paper we consider both the multiple models with switching and tuning methodology as well as multiple models with second level adaptation for this class of systems. We demonstrate that the latter approach is better than the former.
文摘This paper presents a method of state estimation for uncertain nonlinear systems described by multiple models approach. The uncertainties, supposed as norm bounded type, are caused by some parameters' variations of the nonlinear system. Linear matri~ inequalities (LMIs) have been established in order to ensure the stability conditions of the multiple observer which lead to determine the estimation gains. A sliding mode gain has been added in order to compensate the uncertainties. Numerical simulations through a state space model of a real process have been realized to show the robustness of the synthesized observer.
基金Project supported by the College Young Talents Foundation of Anhui Province,China(Grant No.2010SQRL107)the Natural Science Foundation of the Education Department of Anhui Province,China(Grant No.KJ2008B83ZC)the Natural Science Foundation of Anhui Province,China(Grant No.KJ2011Z234)
文摘Both the maximal and the total skew information have been studied. For a three-qubit system implemented in three nonlinear interaction models, we give the exact state vector at any time t. Beused on this, we give the maximal and the total skew information. It is found that they have the same form and their evolution periods are dependent on the energy difference between the ground state and the second excited state in these models. The maximal skew information is always in the (Sx, Sv) plane. We give the condition for the occurrence of IGHZ}sy, in which they can reach the extreme values of 9/4 and 15/4, respectively. In three different decoherence channels, two kinds of information and the concurrence are calculated. We find that the phenomenon of the concurrence of sudden death occurs, but the above two kinds of information do not die suddenly. In the phase-damping channel, the two kinds of information will not be lost completely.
文摘This paper proposes fuzzy model predictive control(FMPC)strategies for nonlinear interconnected systems based mainly on a system decomposition approach.First,the Takagi-Sugeno(TS)fuzzy model is formulated in such a way to describe the behavior of the nonlinear system.Based on that description,a fuzzy model predictive control is determined.The system under consideration is decomposed into several subsystems.For each subsystem,the main idea consists of the decomposition of the control action into two parts:The decentralized part contains the parameters of the subsystem and the centralized part contains the elements of other subsystems.According to such decomposition,two strategies are defined aiming to circumvent the problems caused by interconnection bet ween subsystems.The feasibility and efficiency of the proposed method are illustrated through numerical examples.
基金Supported by the National Natural Science Foundation of China(61472136)the Best Youth of the Education Department of Hunan Province(16B023)
文摘This paper focuses on the stability analysis of nonlinear networked control system with integral quadratic constraints(IQC) performance, dynamic quantization, variable sampling intervals, and communication delays. By using input-delay and parallel distributed compensation(PDC) techniques, we establish the Takagi-Sugeno(T-S) fuzzy model for the system, in which the sampling period of the sampler and signal transmission delay are transformed to the refreshing interval of a zero-order holder(ZOH). By the appropriate Lyapunov-Krasovskii-based methods, a delay-dependent criterion is derived to ensure the asymptotic stability for the system with IQC performance via the H∞ state feedback control. The efficiency of the method is illustrated on a simulation exampler.
基金supported by the Brain Korea 21 PLUS Project,National Research Foundation of Korea(NRF-2013R1A2A2A01068127NRF-2013R1A1A2A10009458)Jiangsu Province University Natural Science Research Project(13KJB510003)
文摘The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems.
文摘For a class of nonlinear systems whose states are immeasurable, when the outputs of the system are sampled asynchronously, by introducing a state observer, an output feedback distributed model predictive control algorithm is proposed. It is proved that the errors of estimated states and the actual system's states are bounded. And it is guaranteed that the estimated states of the closed-loop system are ultimately bounded in a region containing the origin. As a result, the states of the actual system are ultimately bounded. A simulation example verifies the effectiveness of the proposed distributed control method.
文摘In order to design linear controller for nonlinear systems,a simple but efficient method of modeling a nonlinear system was proposed by means of multiple linearized models at different operating points in the entire range of the expected changes of the operating points.The original nonlinear system was described by linear combination of these multiple linearized models,with the linear combination parameters being identified on line based on least squares method.Model Predictive Control,an optimization based technique,was used to design the linear controller.A sufficient condition for ensuring the existence of a linear controller for the original nonlinear system was also given.Good performance indicated by two simulated examples confirms the usefulness of the proposed method.
基金Supported by the National Natural Science Foundation of China (60704002)
文摘The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.
基金supported by National Natural Science Foundation of China(Grant No.51175511)
文摘Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters struc^tres. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system monitoring and diagnosis.
文摘Based on the T-S model, the output regulation of nonlinear singularly perturbed systems via state feedback is discussed. It is shown that, under standard assumptions, this problean is solvable if and only if certain linear matrix equations are solvable. Once these equations are solvable, the state feedback regulator can easily be constructed.
文摘In this paper, a fuzzy adaptive tracking control for uncertain strict-feedback nonlinear systems with unknown bounded disturbances is proposed. The generalized fuzzy hyperbolic model (GFHM) with better approximation performance is used to approximate the unknown nonlinear function in the system. The dynamic surface control (DSC) is used to design the controller, which not only avoids the “explosion of complexity” problem in the process of repeated derivation, but also makes the control system simpler in structure and lower in computational cost because only one adaptive law is designed in the controller design process. Through the Lyapunov stability analysis, all signals in the closed loop system designed in this paper are semi-globally uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the method is verified by a simulation example.
文摘This paper develops a feedforward neural network based input output model for a general unknown nonlinear dynamic system identification when only the inputs and outputs are accessible observations. In the developed model, the size of the input space is directly related to the system order. By monitoring the identification error characteristic curve, we are able to determine the system order and subsequently an appropriate network structure for systems identification. Simulation results are promising and show that generic nonlinear systems can be identified, different cases of the same system can also be discriminated by our model.
文摘This work deals with robust inverse neural control strategy for a class of single-input single-output(SISO) discrete-time nonlinear system affected by parametric uncertainties. According to the control scheme, in the first step, a direct neural model(DNM)is used to learn the behavior of the system, then, an inverse neural model(INM) is synthesized using a specialized learning technique and cascaded to the uncertain system as a controller. In previous works, the neural models are trained classically by backpropagation(BP) algorithm. In this work, the sliding mode-backpropagation(SM-BP) algorithm, presenting some important properties such as robustness and speedy learning, is investigated. Moreover, four combinations using classical BP and SM-BP are tested to determine the best configuration for the robust control of uncertain nonlinear systems. Two simulation examples are treated to illustrate the effectiveness of the proposed control strategy.