In this paper, for general linear methods applied to strictly dissipative initial value problem in Hilbert spaces, we prove that algebraic stability implies B-convergence, which extends and improves the existing resul...In this paper, for general linear methods applied to strictly dissipative initial value problem in Hilbert spaces, we prove that algebraic stability implies B-convergence, which extends and improves the existing results on Runge-Kutta methods. Specializing our results for the case of multi-step Runge-Kutta methods, a series of B-convergence results are obtained.展开更多
The theory of B-convergence for general linear methods is extended to general nonlinear muhivalue methods and to nonlinear stiff problems in Banach spaces. Moreover, using the extended theory, a class of high-order B-...The theory of B-convergence for general linear methods is extended to general nonlinear muhivalue methods and to nonlinear stiff problems in Banach spaces. Moreover, using the extended theory, a class of high-order B-convergent multistep-multiderivative methods is constructed.展开更多
In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties...In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties. In this paper, we extend these results to general linear methods and to more generalproblem class Kστ. The concepts of (k, p, q)-secondary stability and (k, p. q)-secondary stability are introduced, and the criteria of secondary algebraic stability are also established. The criteria relax algebraicstability conditions while retaining the virtues of a nonlinear test problem.展开更多
Presents a study that analyzed the erroneous behavior of general linear methods applied to some classes of one-parameter multiply stiff singularly perturbed problems. Numerical representation of the problem; Computati...Presents a study that analyzed the erroneous behavior of general linear methods applied to some classes of one-parameter multiply stiff singularly perturbed problems. Numerical representation of the problem; Computation of the global error estimate of algebraically and diagonally stable general linear methods; Implications of the results for the case of Runge-Kutta methods.展开更多
基金The project supported by the National Natural Science Foundation of China
文摘In this paper, for general linear methods applied to strictly dissipative initial value problem in Hilbert spaces, we prove that algebraic stability implies B-convergence, which extends and improves the existing results on Runge-Kutta methods. Specializing our results for the case of multi-step Runge-Kutta methods, a series of B-convergence results are obtained.
基金Project supported by the National Natural Science Foundation of China.
文摘The theory of B-convergence for general linear methods is extended to general nonlinear muhivalue methods and to nonlinear stiff problems in Banach spaces. Moreover, using the extended theory, a class of high-order B-convergent multistep-multiderivative methods is constructed.
文摘In 1992, Cooper [2] has presented some new stability concepts for Runge-Kutta methods whichis based on two slightly different test problems, and obtained the algebraic conditions that guarantee newstability properties. In this paper, we extend these results to general linear methods and to more generalproblem class Kστ. The concepts of (k, p, q)-secondary stability and (k, p. q)-secondary stability are introduced, and the criteria of secondary algebraic stability are also established. The criteria relax algebraicstability conditions while retaining the virtues of a nonlinear test problem.
基金the National Natural Science Fundation of China. (No. 19871086 & 10101027)
文摘Presents a study that analyzed the erroneous behavior of general linear methods applied to some classes of one-parameter multiply stiff singularly perturbed problems. Numerical representation of the problem; Computation of the global error estimate of algebraically and diagonally stable general linear methods; Implications of the results for the case of Runge-Kutta methods.