A one-dimensional equivalent linear method (EQL) is widely used in estimating seismic ground response. For this method, the shear modulus and damping ratio of inelastic soil are supposed to be frequency independent....A one-dimensional equivalent linear method (EQL) is widely used in estimating seismic ground response. For this method, the shear modulus and damping ratio of inelastic soil are supposed to be frequency independent. However, historical earthquake records and laboratory test results indicate that nonlinear soil behavior is frequency- dependent. Several frequency-dependent equivalent linear methods (FDEQL) related to the Fourier amplitude of shear strain time history have been developed to take into account the frequency-dependent soil behavior. Furthermore, the shear strain threshold plays an important role in soil behavior. For shear strains below the elastic shear strain threshold, soil behaves essentially as a linear elastic mate- rial. To consider the effect of elastic-shear-strain-threshold- and frequency-dependent soil behavior on wave propaga- tion, the shear-strain-threshold- and frequency-dependent equivalent linear method (TFDEQL) is proposed. A series of analyses is implemented for EQL, FDEQL, and TFDEQL methods. Results show that elastic-shear-strain-threshold- and frequency-dependent soil behavior plays a great influence on the computed site response, especially for the high- frequency band. Also, the effect of elastic-strain-threshold- and frequency-dependent soil behavior on the site response is analyzed from relatively weak to strong input motion, and results show that the effect is more pronounced as input motion goes from weak to strong.展开更多
基金supported by the Science for Earthquake Resilience of China Earthquake Administration(Grant No.XH14060)the National Natural Science Foundation of China(Grant No.51478135)
文摘A one-dimensional equivalent linear method (EQL) is widely used in estimating seismic ground response. For this method, the shear modulus and damping ratio of inelastic soil are supposed to be frequency independent. However, historical earthquake records and laboratory test results indicate that nonlinear soil behavior is frequency- dependent. Several frequency-dependent equivalent linear methods (FDEQL) related to the Fourier amplitude of shear strain time history have been developed to take into account the frequency-dependent soil behavior. Furthermore, the shear strain threshold plays an important role in soil behavior. For shear strains below the elastic shear strain threshold, soil behaves essentially as a linear elastic mate- rial. To consider the effect of elastic-shear-strain-threshold- and frequency-dependent soil behavior on wave propaga- tion, the shear-strain-threshold- and frequency-dependent equivalent linear method (TFDEQL) is proposed. A series of analyses is implemented for EQL, FDEQL, and TFDEQL methods. Results show that elastic-shear-strain-threshold- and frequency-dependent soil behavior plays a great influence on the computed site response, especially for the high- frequency band. Also, the effect of elastic-strain-threshold- and frequency-dependent soil behavior on the site response is analyzed from relatively weak to strong input motion, and results show that the effect is more pronounced as input motion goes from weak to strong.
文摘大量研究表明,粗粒材料的强度和变形特性受初始颗粒级配(grain size distribution,简称GSD)影响显著。然而,当前关于考虑颗粒初始GSD影响的粗粒材料本构模型的研究尚不多见。通过引入能够反映颗粒破碎难易程度的初始级配指标?,将材料初始GSD和终极GSD相联系,系统地探究并阐明了?对粗粒材料峰值抗剪强度qp和峰值应变εap以及e-p平面临界状态线(critical state line,简称CSL)位置的影响机制。针对?对qp和εap影响的研究表明,随着?增加,qp降低;而εap则随着?的增加而增加。结合上述结论,以沈珠江提出的驼峰型二次曲线模型为基础,建立了考虑初始级配和围压影响的切线杨氏模量;针对?对CSL位置影响的研究显示,随着?减小,CSL向下移动的同时还会沿逆时针方向旋转。基于此结论,以临界状态土力学为框架,通过引入状态参数,建立了考虑初始级配和围压影响与状态相关的切线泊松比。对一种粗粒材料而言,该模型只用一套模型参数,且模型预测结果与试验结果较为吻合。