In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian ...The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.展开更多
In this paper, nonlinear matrix equations of the form X + A*f1 (X)A + B*f2 (X)B = Q are discussed. Some necessary and sufficient conditions for the existence of solutions for this equation are derived. It is s...In this paper, nonlinear matrix equations of the form X + A*f1 (X)A + B*f2 (X)B = Q are discussed. Some necessary and sufficient conditions for the existence of solutions for this equation are derived. It is shown that under some conditions this equation has a unique solution, and an iterative method is proposed to obtain this unique solution. Finally, a numerical example is given to identify the efficiency of the results obtained.展开更多
Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive de...Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive definite matrix and A* is the conjugate transpose of the matrix A. We also demonstrate some essential properties and analyze the sensitivity of this solution. In addition, we derive computable error bounds about the approximations to the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q. At last, we further generalize these results to the nonlinear matrix equation X+A^*X^-nA=Q, where n≥2 is a given positive integer.展开更多
This work is concerned with the nonlinear matrix equation Xs + A*F(X)A = Q with s ≥ 1. Several sufficient and necessary conditions for the existence and uniqueness of the Hermitian positive semidefinite solution ...This work is concerned with the nonlinear matrix equation Xs + A*F(X)A = Q with s ≥ 1. Several sufficient and necessary conditions for the existence and uniqueness of the Hermitian positive semidefinite solution are derived, and perturbation bounds are presented.展开更多
In this paper,Hermitian positive definite solutions of the nonlinear matrix equation X + A*X-qA = Q(q ≥ 1) are studied.Some new necessary and sufficient conditions for the existence of solutions are obtained.Two iter...In this paper,Hermitian positive definite solutions of the nonlinear matrix equation X + A*X-qA = Q(q ≥ 1) are studied.Some new necessary and sufficient conditions for the existence of solutions are obtained.Two iterative methods are presented to compute the smallest and the quasi largest positive definite solutions,and the convergence analysis is also given.The theoretical results are illustrated by numerical examples.展开更多
In solving application problems, many largesscale nonlinear systems of equations result in sparse Jacobian matrices. Such nonlinear systems are called sparse nonlinear systems. The irregularity of the locations of non...In solving application problems, many largesscale nonlinear systems of equations result in sparse Jacobian matrices. Such nonlinear systems are called sparse nonlinear systems. The irregularity of the locations of nonzero elements of a general sparse matrix makes it very difficult to generally map sparse matrix computations to multiprocessors for parallel processing in a well balanced manner. To overcome this difficulty, we define a new storage scheme for general sparse matrices in this paper. With the new storage scheme, we develop parallel algorithms to solve large-scale general sparse systems of equations by interval Newton/Generalized bisection methods which reliably find all numerical solutions within a given domain.In Section 1, we provide an introduction to the addressed problem and the interval Newton's methods. In Section 2, some currently used storage schemes for sparse sys-terns are reviewed. In Section 3, new index schemes to store general sparse matrices are reported. In Section 4, we present a parallel algorithm to evaluate a general sparse Jarobian matrix. In Section 5, we present a parallel algorithm to solve the correspond-ing interval linear 8ystem by the all-row preconditioned scheme. Conclusions and future work are discussed in Section 6.展开更多
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
基金The National Natural Science Foundation of China(No.11371089)the China Postdoctoral Science Foundation(No.2016M601688)
文摘The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.
文摘In this paper, nonlinear matrix equations of the form X + A*f1 (X)A + B*f2 (X)B = Q are discussed. Some necessary and sufficient conditions for the existence of solutions for this equation are derived. It is shown that under some conditions this equation has a unique solution, and an iterative method is proposed to obtain this unique solution. Finally, a numerical example is given to identify the efficiency of the results obtained.
文摘Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive definite matrix and A* is the conjugate transpose of the matrix A. We also demonstrate some essential properties and analyze the sensitivity of this solution. In addition, we derive computable error bounds about the approximations to the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q. At last, we further generalize these results to the nonlinear matrix equation X+A^*X^-nA=Q, where n≥2 is a given positive integer.
基金The authors are very much indebted to the referees for their constructive and valuable comments and suggestions which greatly improved the original manuscript of this paper. This work of the first author is supported by Scholarship Award for Excellent Doctoral Student granted by East China Normal University (No.XRZZ2012021). This work of the second author is supported by the National Natural Science Foundation of China (No. 11071079), Natural Science Foundation of Anhui Province (No. 10040606Q47) and Natural Science Foundation of Zhejiang Province (No. Y6110043). This work of the fourth author is supported by the National Natural Science Foundation of China (No. 10901056), Science and Technology Commission of Shanghai Municipality (No. 11QA1402200).
文摘This work is concerned with the nonlinear matrix equation Xs + A*F(X)A = Q with s ≥ 1. Several sufficient and necessary conditions for the existence and uniqueness of the Hermitian positive semidefinite solution are derived, and perturbation bounds are presented.
基金Foundation item: the Natural Science Foundation of Hunan Province (No. 09JJ6012).
文摘In this paper,Hermitian positive definite solutions of the nonlinear matrix equation X + A*X-qA = Q(q ≥ 1) are studied.Some new necessary and sufficient conditions for the existence of solutions are obtained.Two iterative methods are presented to compute the smallest and the quasi largest positive definite solutions,and the convergence analysis is also given.The theoretical results are illustrated by numerical examples.
文摘In solving application problems, many largesscale nonlinear systems of equations result in sparse Jacobian matrices. Such nonlinear systems are called sparse nonlinear systems. The irregularity of the locations of nonzero elements of a general sparse matrix makes it very difficult to generally map sparse matrix computations to multiprocessors for parallel processing in a well balanced manner. To overcome this difficulty, we define a new storage scheme for general sparse matrices in this paper. With the new storage scheme, we develop parallel algorithms to solve large-scale general sparse systems of equations by interval Newton/Generalized bisection methods which reliably find all numerical solutions within a given domain.In Section 1, we provide an introduction to the addressed problem and the interval Newton's methods. In Section 2, some currently used storage schemes for sparse sys-terns are reviewed. In Section 3, new index schemes to store general sparse matrices are reported. In Section 4, we present a parallel algorithm to evaluate a general sparse Jarobian matrix. In Section 5, we present a parallel algorithm to solve the correspond-ing interval linear 8ystem by the all-row preconditioned scheme. Conclusions and future work are discussed in Section 6.