A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal m...A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.展开更多
In order to alleviate the steady-state position error and the destabilizing effect of the nonlinear friction, a novel compensation method is presented, which modified the traditional Southward's compensation metho...In order to alleviate the steady-state position error and the destabilizing effect of the nonlinear friction, a novel compensation method is presented, which modified the traditional Southward's compensation method. Estimated the nonlinear friction model using an identification method, the effect caused by its nonlinear component can be compensated, and an enhanced tracking performance is verified on a selectively compliant articulated robot arm(SCARA) robot.展开更多
For a pneumatic actuator,precise positioning is difficult to obtain because of the compressibility of air and the static friction and Coulomb friction.This paper develops a nonlinear friction compensation scheme for p...For a pneumatic actuator,precise positioning is difficult to obtain because of the compressibility of air and the static friction and Coulomb friction.This paper develops a nonlinear friction compensation scheme for precise positioning of a pneumatic system.This Scheme is tested by simulation and experiment and is shown to be effective.展开更多
In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stag...In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stages seriously affects output accuracy and stability.To solve this problem,the motion characteristics of a rotating stage and the mechanism by which friction nonlinearity influences accuracy are analyzed in detail.In addition,a compound control strategy based on a kinematic model and the Stribeck friction model is designed.A friction disturbance observer based on output position feedback is improved for simple parameter tuning.Finally,an experimental system is constructed to carry out validation tests,including identification of nonlinear characteristics and performance comparisons.The experimental results show that the linear tracking error of the torque-type rotating stage is less than 1.47µm after adoption of the proposed model-based composite control strategy,and the corresponding rotary angle deviation is less than 0.0153°.The linearity of output motion is increased to 97.59%and the error compensation effect is improved by 51.6%compared with the PID control method.The experimental results confirm that the analysis method adopted here and the proposed compensation strategy can effectively reduce frictional nonlinearity and improve motion accuracy.The proposed method can also be applied to other precision electromechanical systems.展开更多
This article focuses on the problem of how to accurately calculate the joint control torques when the explosion-proof robot performs collision detection without sensors and gives a complete solution.Nonlinear joint fr...This article focuses on the problem of how to accurately calculate the joint control torques when the explosion-proof robot performs collision detection without sensors and gives a complete solution.Nonlinear joint frictions are incorporated into the dynamic model of a robotic manip-ulator to improve calculation accuracy.A genetic algorithm is used to optimise the excitation trajectories to fully stimulate the robot dynamic characteristics.Effective and applicable data filtering and smoothing methods are proposed and the Iteratively Reweighted Least-Squares method based on the error term is applied to identify the robot dynamic parameters.Compared with Ordinary Least-Squares method,the proposed algorithm improves the accuracy of joint control torques estimation.展开更多
A Jeffery-Hamel (J-H) flow model of the non-Newtonian fluid type inside a convergent wedge (inclined walls) with a wall friction is derived by a nonlinear ordinary differential equation with appropriate boundary c...A Jeffery-Hamel (J-H) flow model of the non-Newtonian fluid type inside a convergent wedge (inclined walls) with a wall friction is derived by a nonlinear ordinary differential equation with appropriate boundary conditions based on similarity relationships. Unlike the usual power law model, this paper develops nonlinear viscosity based only on a tangential coordinate function due to the radial geometry shape. Two kinds of solutions are developed, i.e., analytical and semi-analytical (numerical) solutions with suitable assumptions. As a result of the parametric examination, it has been found that the Newtonian normalized velocity gradually decreases with the tangential direction progress. Also, an increase in the friction coefficient leads to a decrease in the normalized Newtonian velocity profile values. However, an increase in the Reynolds number causes an increase in the normalized velocity function values. Additionally, for the small values of wedge semi-angle, the present solutions are in good agreement with the previous results in the literature.展开更多
This paper presents a refined parabolic approximation model of the mild slope equation to simulate the combination of water wave refraction and diffraction in the large coastal region. The bottom friction and weakly n...This paper presents a refined parabolic approximation model of the mild slope equation to simulate the combination of water wave refraction and diffraction in the large coastal region. The bottom friction and weakly nonlinear term are included in the model. The difference equation is established with the Crank-Nicolson scheme. The numerical test shows that some numerical prediction results will be inaccurate in complicated topography without considering weak nonlinearity; the bottom friction will make wave height damping and it can not be neglected for calculation of wave field in large areas.展开更多
Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifi- cations and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, th...Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifi- cations and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, the insertion of a base isolation system allows a considerable reduction of the seismic loads transmitted to the super- structure. However, strong near-fault ground motions, which are characterised by long-duration horizontal pulses, may amplify the inelastic response of the superstructure and induce a failure of the isolation system. The above considerations point out the importance of checking the effectiveness of different isolation systems for retrofitting a r.c. framed structure. For this purpose, a numerical inves- tigation is carried out with reference to a six-storey r.c. framed building, which, primarily designed (as to be a fixed-base one) in compliance with the previous Italian code (DM96) for a medium-risk seismic zone, has to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by the current Italian code (NTC08) in a high-risk seismic zone. Besides the (fixed-base) original structure, three cases of base isolation are studied: elastomeric bearings acting alone (e.g. HDLRBs); in-parallel combination of elastomeric and friction bearings (e.g. high-damping-laminated-rubber beatings, HDLRBs and steel-PTFE sliding bearings, SBs); friction bearings acting alone (e.g. friction pendulum bearings, FPBs). The nonlinear analysis of the fixed-base and base-isolated structures subjected to horizontal com- ponents of near-fault ground motions is performed for checking plastic conditions at the potential critical (end) sections of the girders and columns as well as critical conditions of the isolation systems. Unexpected high val- ues of ductility demand are highlighted at the lower floors of all base-isolated structures, while re-centring problems of the base isolation systems under near-fault earthquakes are expected in case of friction beatings acting alone (i.e. FPBs) or that in combination (i.e. SBs) with HDLRBs.展开更多
Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness t...Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy.展开更多
A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dyn...A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.展开更多
Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction ...Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints is presented. In particular, a wheeled multi-body system is considered. Here, the state transition of stick-slip between wheel and ground is transformed into a nonlinear complementarity problem (NCP). An iterative algorithm for solving the NCP is then presented using an event-driven method. Dynamical equations of the multi-body system with holonomic and nonholonomic constraints are given using Routh equations and a con- straint stabilization method. Finally, an example is used to test the proposed numerical method. The results show some dynamical behaviors of the wheeled multi-body system and its constraint stabilization effects.展开更多
The rigid-interface friction model is usually used in the nonlinear vibrationof the rectangular plate with dry friction support edges. The present study provides an extensionby using a hysteretic spring friction model...The rigid-interface friction model is usually used in the nonlinear vibrationof the rectangular plate with dry friction support edges. The present study provides an extensionby using a hysteretic spring friction model and taking account of the stick-slip motion of theplate. Results for a range of problem parameters have been obtained. The results show that thenonlinear frequency response behavior of the system can be quite different from the rigid-interfacefriction model. The effects of the stiffness at friction interfaces and the stick-slip motion on thenonlinear vibration of the plate are significant and hence cannot be neglected.展开更多
Wave formulae derived from the dispersion relation for cnoidal waves are used to find an analytical solution to the problem of nearshore wave height variation on a simple topography, i. e., with an incrementally const...Wave formulae derived from the dispersion relation for cnoidal waves are used to find an analytical solution to the problem of nearshore wave height variation on a simple topography, i. e., with an incrementally constant slope. The solution accounts for shoaling, frictional dissipation and will be sufficiently accurate for practical purposes considering the simplified assumptions which are necessary for the treatment of this problem by any method.展开更多
This article is involved with the asymptotic behavior of solutions for nonlinear hyperbolic system with external friction. The global existence of classical solutions is proven,and L^p convergence rates are obtained. ...This article is involved with the asymptotic behavior of solutions for nonlinear hyperbolic system with external friction. The global existence of classical solutions is proven,and L^p convergence rates are obtained. Compared with the results obtained by Hsiao and Liu, better convergence rates are obtained in this article.展开更多
The complexity of modem seismically isolated structures requires the analysis of the structural, system and the isolation system in its entirety and the ability to capture potential discontinuous phenomena such as iso...The complexity of modem seismically isolated structures requires the analysis of the structural, system and the isolation system in its entirety and the ability to capture potential discontinuous phenomena such as isolator uplift and their effects on the superstructures and the isolation hardware. In this paper, an analytical model is developed and a computational algorithm is formulated to analyze complex seismically isolated superstructures even when undergoing highly-nonlinear phenomena such as uplift. The computational model has the capability of modeling various types of isolation devices with strong nonlinearities, analyzing multiple superstructures (up to five separate superstructures) on multiple bases (up to five bases), and capturing the effects of lateral loads on bearing axial forces, including bearing uplift. The model developed herein has been utilized to form the software platform 3D-BASIS-ME-MB, which provides the practicing engineering community with a versatile tool for analysis and design of complex structures with modem isolation systems.展开更多
In the present paper, by introducing the effective wave elevation, we transform the extended elliptic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simpl...In the present paper, by introducing the effective wave elevation, we transform the extended elliptic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simplest time-dependent hyperbolic equation. Based on this equation and the empirical nonlinear amplitude dispersion relation proposed by Li et al. (2003), the numerical scheme is established. Error analysis by Taylor expansion method shows that the numerical stability of the present model succeeds the merits in Song et al. (2007)'s model because of the introduced dissipation terms. For the purpose of verifying its performance on wave nonlinearity, rapidly varying topography and wave breaking, the present model is applied to study: (1) wave refraction and diffraction over a submerged elliptic shoal on a slope (Berkhoff et al., 1982); (2) Bragg reflection of monochromatic waves from the sinusoidal ripples (Davies and Heathershaw, 1985); (3) wave transformation near a shore attached breakwater (Watanabe and Maruyama, 1986). Comparisons of the numerical solutions with the experimental or theoretical ones or with those of other models (REF/DIF model and FUNWAVE model) show good results, which indicate that the present model is capable of giving favorably predictions of wave refraction, diffraction, reflection, shoaling, bottom friction, breaking energy dissipation and weak nonlinearity in the near shore zone.展开更多
A nonlinear observer of friction torque is formulated for valve controlled servomotor system. The effect of the observer is studied with simulating method and its applied condition is analyzed. When the above observer...A nonlinear observer of friction torque is formulated for valve controlled servomotor system. The effect of the observer is studied with simulating method and its applied condition is analyzed. When the above observer is not suitable foe use, a simple PID controlling method with variable parameters is presented. The method has been proved to be effective by the experimental results.展开更多
A 2D time domain boundary element method(BEM)is developed to solve the transient scattering of plane waves by a unilaterally frictionally constrained inclusion.Coulomb friction is assumed along the contact interface.T...A 2D time domain boundary element method(BEM)is developed to solve the transient scattering of plane waves by a unilaterally frictionally constrained inclusion.Coulomb friction is assumed along the contact interface.The incident wave is assumed strong enough so that localized slip and separation take place along the interface.The present problem is in effect a nonlinear boundary value problem since the mixed boundary conditions involve unknown intervals (slip,separation and stick regions).In order to determine the unknown intervals,an iterative technique is developed.As an example,we consider the scattering of a circular cylinder embedded in an infinite solid.展开更多
基金National Natural Science Foundation of China(No.61273339)
文摘A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.
文摘In order to alleviate the steady-state position error and the destabilizing effect of the nonlinear friction, a novel compensation method is presented, which modified the traditional Southward's compensation method. Estimated the nonlinear friction model using an identification method, the effect caused by its nonlinear component can be compensated, and an enhanced tracking performance is verified on a selectively compliant articulated robot arm(SCARA) robot.
文摘For a pneumatic actuator,precise positioning is difficult to obtain because of the compressibility of air and the static friction and Coulomb friction.This paper develops a nonlinear friction compensation scheme for precise positioning of a pneumatic system.This Scheme is tested by simulation and experiment and is shown to be effective.
基金funded by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement(Grant No.101026104)by the National Natural Science Foundation of China(Grant No.U20A6004)in part by the State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment(Grant No.JMDZ202314).
文摘In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stages seriously affects output accuracy and stability.To solve this problem,the motion characteristics of a rotating stage and the mechanism by which friction nonlinearity influences accuracy are analyzed in detail.In addition,a compound control strategy based on a kinematic model and the Stribeck friction model is designed.A friction disturbance observer based on output position feedback is improved for simple parameter tuning.Finally,an experimental system is constructed to carry out validation tests,including identification of nonlinear characteristics and performance comparisons.The experimental results show that the linear tracking error of the torque-type rotating stage is less than 1.47µm after adoption of the proposed model-based composite control strategy,and the corresponding rotary angle deviation is less than 0.0153°.The linearity of output motion is increased to 97.59%and the error compensation effect is improved by 51.6%compared with the PID control method.The experimental results confirm that the analysis method adopted here and the proposed compensation strategy can effectively reduce frictional nonlinearity and improve motion accuracy.The proposed method can also be applied to other precision electromechanical systems.
基金supported by the National Key Research and Development Program:[Grant Number 2018YFB1305700].
文摘This article focuses on the problem of how to accurately calculate the joint control torques when the explosion-proof robot performs collision detection without sensors and gives a complete solution.Nonlinear joint frictions are incorporated into the dynamic model of a robotic manip-ulator to improve calculation accuracy.A genetic algorithm is used to optimise the excitation trajectories to fully stimulate the robot dynamic characteristics.Effective and applicable data filtering and smoothing methods are proposed and the Iteratively Reweighted Least-Squares method based on the error term is applied to identify the robot dynamic parameters.Compared with Ordinary Least-Squares method,the proposed algorithm improves the accuracy of joint control torques estimation.
文摘A Jeffery-Hamel (J-H) flow model of the non-Newtonian fluid type inside a convergent wedge (inclined walls) with a wall friction is derived by a nonlinear ordinary differential equation with appropriate boundary conditions based on similarity relationships. Unlike the usual power law model, this paper develops nonlinear viscosity based only on a tangential coordinate function due to the radial geometry shape. Two kinds of solutions are developed, i.e., analytical and semi-analytical (numerical) solutions with suitable assumptions. As a result of the parametric examination, it has been found that the Newtonian normalized velocity gradually decreases with the tangential direction progress. Also, an increase in the friction coefficient leads to a decrease in the normalized Newtonian velocity profile values. However, an increase in the Reynolds number causes an increase in the normalized velocity function values. Additionally, for the small values of wedge semi-angle, the present solutions are in good agreement with the previous results in the literature.
基金National Natural Science Foundation of China(Grant No.19732004)
文摘This paper presents a refined parabolic approximation model of the mild slope equation to simulate the combination of water wave refraction and diffraction in the large coastal region. The bottom friction and weakly nonlinear term are included in the model. The difference equation is established with the Crank-Nicolson scheme. The numerical test shows that some numerical prediction results will be inaccurate in complicated topography without considering weak nonlinearity; the bottom friction will make wave height damping and it can not be neglected for calculation of wave field in large areas.
基金financed by Re.L.U.I.S.(Italian network of university laboratories of earthquake engineering),under the project "Convenzione D.P.C.-Re.L.U.I.S. 2014-2016,WPI,Isolation and Dissipation"
文摘Reinforced concrete (r.c.) framed buildings designed in compliance with inadequate seismic classifi- cations and code provisions present in many cases a high vulnerability and need to be retrofitted. To this end, the insertion of a base isolation system allows a considerable reduction of the seismic loads transmitted to the super- structure. However, strong near-fault ground motions, which are characterised by long-duration horizontal pulses, may amplify the inelastic response of the superstructure and induce a failure of the isolation system. The above considerations point out the importance of checking the effectiveness of different isolation systems for retrofitting a r.c. framed structure. For this purpose, a numerical inves- tigation is carried out with reference to a six-storey r.c. framed building, which, primarily designed (as to be a fixed-base one) in compliance with the previous Italian code (DM96) for a medium-risk seismic zone, has to be retrofitted by insertion of an isolation system at the base for attaining performance levels imposed by the current Italian code (NTC08) in a high-risk seismic zone. Besides the (fixed-base) original structure, three cases of base isolation are studied: elastomeric bearings acting alone (e.g. HDLRBs); in-parallel combination of elastomeric and friction bearings (e.g. high-damping-laminated-rubber beatings, HDLRBs and steel-PTFE sliding bearings, SBs); friction bearings acting alone (e.g. friction pendulum bearings, FPBs). The nonlinear analysis of the fixed-base and base-isolated structures subjected to horizontal com- ponents of near-fault ground motions is performed for checking plastic conditions at the potential critical (end) sections of the girders and columns as well as critical conditions of the isolation systems. Unexpected high val- ues of ductility demand are highlighted at the lower floors of all base-isolated structures, while re-centring problems of the base isolation systems under near-fault earthquakes are expected in case of friction beatings acting alone (i.e. FPBs) or that in combination (i.e. SBs) with HDLRBs.
基金National Science Fund for Distinguished Young Scholars (50825502)
文摘Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy.
基金supported by the National Natural Science Foundation of China (60428303)
文摘A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Nos.11372018 and 11572018)
文摘Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints is presented. In particular, a wheeled multi-body system is considered. Here, the state transition of stick-slip between wheel and ground is transformed into a nonlinear complementarity problem (NCP). An iterative algorithm for solving the NCP is then presented using an event-driven method. Dynamical equations of the multi-body system with holonomic and nonholonomic constraints are given using Routh equations and a con- straint stabilization method. Finally, an example is used to test the proposed numerical method. The results show some dynamical behaviors of the wheeled multi-body system and its constraint stabilization effects.
文摘The rigid-interface friction model is usually used in the nonlinear vibrationof the rectangular plate with dry friction support edges. The present study provides an extensionby using a hysteretic spring friction model and taking account of the stick-slip motion of theplate. Results for a range of problem parameters have been obtained. The results show that thenonlinear frequency response behavior of the system can be quite different from the rigid-interfacefriction model. The effects of the stiffness at friction interfaces and the stick-slip motion on thenonlinear vibration of the plate are significant and hence cannot be neglected.
文摘Wave formulae derived from the dispersion relation for cnoidal waves are used to find an analytical solution to the problem of nearshore wave height variation on a simple topography, i. e., with an incrementally constant slope. The solution accounts for shoaling, frictional dissipation and will be sufficiently accurate for practical purposes considering the simplified assumptions which are necessary for the treatment of this problem by any method.
基金supported by the National Natural Science Foundation of China(11701489,11871412)the Hunan Provincial Natural Science Foundation of China(2018JJ2373,2018JJ3481)
文摘This article is involved with the asymptotic behavior of solutions for nonlinear hyperbolic system with external friction. The global existence of classical solutions is proven,and L^p convergence rates are obtained. Compared with the results obtained by Hsiao and Liu, better convergence rates are obtained in this article.
基金support for this project was provided by the Multidisciplinary Center for Earthquake Engineering Research through a grant from the Earthquake Engineering Research Centers Program of the National Science Foundation under award number EEC 9701471.
文摘The complexity of modem seismically isolated structures requires the analysis of the structural, system and the isolation system in its entirety and the ability to capture potential discontinuous phenomena such as isolator uplift and their effects on the superstructures and the isolation hardware. In this paper, an analytical model is developed and a computational algorithm is formulated to analyze complex seismically isolated superstructures even when undergoing highly-nonlinear phenomena such as uplift. The computational model has the capability of modeling various types of isolation devices with strong nonlinearities, analyzing multiple superstructures (up to five separate superstructures) on multiple bases (up to five bases), and capturing the effects of lateral loads on bearing axial forces, including bearing uplift. The model developed herein has been utilized to form the software platform 3D-BASIS-ME-MB, which provides the practicing engineering community with a versatile tool for analysis and design of complex structures with modem isolation systems.
基金Open Fund of Key Laboratory of Coastal Disasters and Defence (Ministry of Education)National Natural Science Foundation of China under contract No. 50779015
文摘In the present paper, by introducing the effective wave elevation, we transform the extended elliptic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simplest time-dependent hyperbolic equation. Based on this equation and the empirical nonlinear amplitude dispersion relation proposed by Li et al. (2003), the numerical scheme is established. Error analysis by Taylor expansion method shows that the numerical stability of the present model succeeds the merits in Song et al. (2007)'s model because of the introduced dissipation terms. For the purpose of verifying its performance on wave nonlinearity, rapidly varying topography and wave breaking, the present model is applied to study: (1) wave refraction and diffraction over a submerged elliptic shoal on a slope (Berkhoff et al., 1982); (2) Bragg reflection of monochromatic waves from the sinusoidal ripples (Davies and Heathershaw, 1985); (3) wave transformation near a shore attached breakwater (Watanabe and Maruyama, 1986). Comparisons of the numerical solutions with the experimental or theoretical ones or with those of other models (REF/DIF model and FUNWAVE model) show good results, which indicate that the present model is capable of giving favorably predictions of wave refraction, diffraction, reflection, shoaling, bottom friction, breaking energy dissipation and weak nonlinearity in the near shore zone.
文摘A nonlinear observer of friction torque is formulated for valve controlled servomotor system. The effect of the observer is studied with simulating method and its applied condition is analyzed. When the above observer is not suitable foe use, a simple PID controlling method with variable parameters is presented. The method has been proved to be effective by the experimental results.
基金Project supported by the National Natural Science Foundation of China(Nos.19872001 and 59878004)the National Natural Science Foundation for Distinguished Young Scholars(No.10025211).
文摘A 2D time domain boundary element method(BEM)is developed to solve the transient scattering of plane waves by a unilaterally frictionally constrained inclusion.Coulomb friction is assumed along the contact interface.The incident wave is assumed strong enough so that localized slip and separation take place along the interface.The present problem is in effect a nonlinear boundary value problem since the mixed boundary conditions involve unknown intervals (slip,separation and stick regions).In order to determine the unknown intervals,an iterative technique is developed.As an example,we consider the scattering of a circular cylinder embedded in an infinite solid.