This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of th...Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.展开更多
The dynamic analysis of damped structural system by using finite element method leads to nonlinear eigenvalue problem(NEP)(particularly,quadratic eigenvalue problem).In general,the parameters of NEP are considered as ...The dynamic analysis of damped structural system by using finite element method leads to nonlinear eigenvalue problem(NEP)(particularly,quadratic eigenvalue problem).In general,the parameters of NEP are considered as exact values.But in actual practice because of different errors and incomplete information,the parameters may have uncertain or vague values and such uncertain values may be considered in terms of fuzzy numbers.This article proposes an efficient fuzzy-affine approach to solve fully fuzzy nonlinear eigenvalue problems(FNEPs)where involved parameters are fuzzy numbers viz.triangular and trapezoidal.Based on the parametric form,fuzzy numbers have been transformed into family of standard intervals.Further due to the presence of interval overestimation problem in standard interval arithmetic,affine arithmetic based approach has been implemented.In the proposed method,the FNEP has been linearized into a generalized eigenvalue problem and further solved by using the fuzzy-affine approach.Several application problems of structures and also general NEPs with fuzzy parameters are investigated based on the proposed procedure.Lastly,fuzzy eigenvalue bounds are illustrated with fuzzy plots with respect to its membership function.Few comparisons are also demonstrated to show the reliability and efficacy of the present approach.展开更多
We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear ...We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and nonlinear eigenvalue problems on the coarsest finite element space. The linearized boundary value problems are solved by some multigrid iterations.Besides the multigrid iteration, all other efficient iteration methods for solving boundary value problems can serve as the linear problem solver. We prove that the computational work of this new scheme is truly optimal,the same as solving the linear corresponding boundary value problem. In this case, this type of iteration scheme certainly improves the overfull efficiency of solving nonlinear eigenvalue problems. Some numerical experiments are presented to validate the efficiency of the new method.展开更多
We study the smooth LU decomposition of a given analytic functional A-matrix A(A) and its block-analogue. Sufficient conditions for the existence of such matrix decompositions are given, some differentiability about...We study the smooth LU decomposition of a given analytic functional A-matrix A(A) and its block-analogue. Sufficient conditions for the existence of such matrix decompositions are given, some differentiability about certain elements arising from them are proved, and several explicit expressions for derivatives of the specified elements are provided. By using these smooth LU decompositions, we propose two numerical methods for computing multiple nonlinear eigenvalues of A(A), and establish their locally quadratic convergence properties. Several numerical examples are provided to show the feasibility and effectiveness of these new methods.展开更多
Shifted symmetric higher-order power method(SS-HOPM)has been proved e ective in solving the nonlinear eigenvalue problem oriented from the Bose-Einstein Condensation(BEC-like NEP for short)both theoretically and numer...Shifted symmetric higher-order power method(SS-HOPM)has been proved e ective in solving the nonlinear eigenvalue problem oriented from the Bose-Einstein Condensation(BEC-like NEP for short)both theoretically and numerically.However,the convergence of the sequence generated by SS-HOPM is based on the assumption that the real eigenpairs of BEC-like NEP are nite.In this paper,we will establish the point-wise convergence via Lojasiewicz inequality by introducing a new related sequence.展开更多
In this paper we consider the existence of infinitely many positive solutions for second order nonlinear eigenvalue problem with singular coefficient function. By the use of Krasnosel'skii fixed point theorem of c...In this paper we consider the existence of infinitely many positive solutions for second order nonlinear eigenvalue problem with singular coefficient function. By the use of Krasnosel'skii fixed point theorem of cone expansion-compression type we give several sufficient conditions.展开更多
In this paper,we study an adaptive finite element method for a class of nonlinear eigenvalue problems resulting from quantum physics that may have a nonconvex energy functional.We prove the convergence of adaptive fin...In this paper,we study an adaptive finite element method for a class of nonlinear eigenvalue problems resulting from quantum physics that may have a nonconvex energy functional.We prove the convergence of adaptive finite element approximations and present several numerical examples of micro-structure of matter calculations that support our theory.展开更多
In this paper we propose a uniformly convergent numerical method for discretizing singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation and quantum chemis...In this paper we propose a uniformly convergent numerical method for discretizing singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation and quantum chemistry.We begin with the time-independent Gross-Pitaevskii equation and show how to reformulate it into a singularly perturbed nonlinear eigenvalue problem under a constraint.Matched asymptotic approximations for the problem are presented to locate the positions and characterize the widths of boundary layers and/or interior layers in the solution.A uniformly convergent numerical method is proposed by using the normalized gradient flow and piecewise uniform mesh techniques based on the asymptotic approximations for the problem.Extensive numerical results are reported to demonstrate the effectiveness of our numerical method for the problems.Finally,the method is applied to compute ground and excited states of Bose-Einstein condensation in the semiclassical regime and some conclusive findings are reported.展开更多
In this paper, we investigate a fourth-order three-point nonlinear eigenvalue problem. By the Krasnosel’skii’s fixed-point theorem in cone, some new results on the existence of positive solutions are obtained.
In this paper, we determine the infimum and the supremum of the Dirich-let eigenvalues λn(p) (n = 1,2,…)of the problem t∈ ?[0,T], where 1 < p < ∞, and the weights p are nonnegative and are subject to conditi...In this paper, we determine the infimum and the supremum of the Dirich-let eigenvalues λn(p) (n = 1,2,…)of the problem t∈ ?[0,T], where 1 < p < ∞, and the weights p are nonnegative and are subject to conditions p(t)dt = M and max(e[0,T] p(t) = H. It is also explained for whatweights p the infimum and the supremum will be attained.展开更多
Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In th...Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In this paper, we first study the existence and uniqueness of eigenvalues, and then investigate three numerical algorithms, namely Picard iteration, nonlinear Rayleigh quotient iteration and successive linear approximation method (SLAM). The global convergence of the SLAM is proven under some mild assumptions. Numerical examples illustrate that the SLAM is the most robust method.展开更多
The transmission eigenvalue problem is an eigenvalue problem that arises in the scatter- ing of time-harmonic waves by an inhomogeneous medium of compact support. Based on a fourth order formulation, the transmission ...The transmission eigenvalue problem is an eigenvalue problem that arises in the scatter- ing of time-harmonic waves by an inhomogeneous medium of compact support. Based on a fourth order formulation, the transmission eigenvalue problem is discretized by the Mor- ley element. For the resulting quadratic eigenvalue problem, a recursive integral method is used to compute real and complex eigenvalues in prescribed regions in the complex plane. Numerical examples are presented to demonstrate the effectiveness of the proposed method.展开更多
The focus of this paper is on determination of the dynamic parameters of structural systems with viscoelastic (VE) dampers described by Maxwell rheological models. Such parameters could be obtained after solving the a...The focus of this paper is on determination of the dynamic parameters of structural systems with viscoelastic (VE) dampers described by Maxwell rheological models. Such parameters could be obtained after solving the appropriately defined nonlinear eigenvalue problem for frames with VE dampers. The solution to the nonlinear eigenvalue problem is obtained by equating to zero the determinant of the considered system of equations. Apart from complex conjugate eigenvalues, the real ones occurred when dampers that are described by the classic Maxwell model, are also determined.展开更多
In previous research on the nonlinear dynamics of cable-stayed bridges,boundary conditions were not properly modeled in the modeling.In order to obtain the nonlinear dynamics of cable-stayed bridges more accurately,a ...In previous research on the nonlinear dynamics of cable-stayed bridges,boundary conditions were not properly modeled in the modeling.In order to obtain the nonlinear dynamics of cable-stayed bridges more accurately,a double-cable-stayed shallow-arch model with elastic supports at both ends and the initial configuration of bridge deck included in the modeling is developed in this study.The in-plane eigenvalue problems of the model are solved by dividing the shallow arch(SA)into three partitions according to the number of cables and the piecewise functions are taken as trial functions of the SA.Then,the in-plane one-toone-to-one internal resonance among the global mode and the local modes(two cables’modes)is investigated when external primary resonance occurs.The ordinary differential equations(ODEs)are obtained by Galerkin’s method and solved by the method of multiple time scales.The stable equilibrium solutions of modulation equations are obtained by using the NewtonRaphson method.In addition,the frequency-/force-response curves under different vertical stiffness are provided to study the nonlinear dynamic behaviors of the elastically supported model.To validate the theoretical analyses,the Runge-Kutta method is applied to obtain the numerical solutions.Finally,some interesting conclusions are drawn.展开更多
The major difficulty in achieving good performance of industrial polymerization reactors lies in the lack of understanding of their nonlinear dynamics and the lack of well-developed techniques for the control of nonli...The major difficulty in achieving good performance of industrial polymerization reactors lies in the lack of understanding of their nonlinear dynamics and the lack of well-developed techniques for the control of nonlinear processes, which are usually accompanied with bifurcation phenomenon. This work aims at investigating the nonlinear behavior of the parameterized nonlinear system of vinyl acetate polymerization and further modifying the bifurcation characteristics of this process via a washout filter-aid controller, with all the original steady state equilibria preserved. Advantages and possible extensions of the proposed methodology are discussed to provide scientific guide for further controller design and operation improvement.展开更多
In this paper we study the existence of nontrivial solutions of a class of asymptotically linear elliptic resonant problems at higher eigenvalues with the nonlinear term which may be un- bounded by making use of the M...In this paper we study the existence of nontrivial solutions of a class of asymptotically linear elliptic resonant problems at higher eigenvalues with the nonlinear term which may be un- bounded by making use of the Morse theory for a C^2-function at both isolated critical point and infinity.展开更多
In this article we are interested in the numerical computation of spectra of non-self adjoint quadratic operators,in two and three spatial dimensions.Indeed,in the multidimensional case very few results are known on t...In this article we are interested in the numerical computation of spectra of non-self adjoint quadratic operators,in two and three spatial dimensions.Indeed,in the multidimensional case very few results are known on the location of the eigenvalues.This leads to solve nonlinear eigenvalue problems.In introduction we begin with a review of theoretical results and numerical results obtained for the one dimensional case.Then we present the numerical methods developed to compute the spectra(finite difference discretization)for the two and three dimensional cases.The numerical results obtained are presented and analyzed.One difficulty here is that we have to compute eigenvalues of strongly non-self-adjoint operators which are unstable.This work is in continuity of a previous work in one spatial dimension[3].展开更多
Rotation numbers are used in this paper to study the periodic and anti-periodic eigenvalues of the one-dimensional p-Laplacian with a periodic weight which changes sign. The analysis proves that for any nonnegative i...Rotation numbers are used in this paper to study the periodic and anti-periodic eigenvalues of the one-dimensional p-Laplacian with a periodic weight which changes sign. The analysis proves that for any nonnegative integer n, ρ -1(n/2) is the union of two closed intervals, one of which lies in [FK(W+3mm?3mm][TPP533A,+3mm?2mm] + and the other in [FK(W+3mm?3mm][TPP533A,+3mm?2mm] -, and the endpoints of these intervals yield the corresponding periodic and anti-periodic eigenvalues.展开更多
In this paper we apply a cone theoretic fixed-point theorem proved by Krasnosel'skii to obtain sufficient conditions for the existence of positive solutions to some boundary value problems for a class of functional d...In this paper we apply a cone theoretic fixed-point theorem proved by Krasnosel'skii to obtain sufficient conditions for the existence of positive solutions to some boundary value problems for a class of functional difference equations. We consider the case that the nonlinear term satisfies asvrnntoticallv linear growth.展开更多
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
基金supported by the National Natural Science Foundation of China(Nos.1133200711202147+2 种基金and 9216111)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120032120007)the Open Fund from State Key Laboratory of Aerodynamics(Nos.SKLA201201 and SKLA201301)
文摘Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.
文摘The dynamic analysis of damped structural system by using finite element method leads to nonlinear eigenvalue problem(NEP)(particularly,quadratic eigenvalue problem).In general,the parameters of NEP are considered as exact values.But in actual practice because of different errors and incomplete information,the parameters may have uncertain or vague values and such uncertain values may be considered in terms of fuzzy numbers.This article proposes an efficient fuzzy-affine approach to solve fully fuzzy nonlinear eigenvalue problems(FNEPs)where involved parameters are fuzzy numbers viz.triangular and trapezoidal.Based on the parametric form,fuzzy numbers have been transformed into family of standard intervals.Further due to the presence of interval overestimation problem in standard interval arithmetic,affine arithmetic based approach has been implemented.In the proposed method,the FNEP has been linearized into a generalized eigenvalue problem and further solved by using the fuzzy-affine approach.Several application problems of structures and also general NEPs with fuzzy parameters are investigated based on the proposed procedure.Lastly,fuzzy eigenvalue bounds are illustrated with fuzzy plots with respect to its membership function.Few comparisons are also demonstrated to show the reliability and efficacy of the present approach.
基金supported by National Natural Science Foundation of China (Grant Nos. 91330202, 11371026, 11201501, 11571389, 11001259 and 11031006)National Basic Research Program of China (Grant No. 2011CB309703)the National Center for Mathematics and Interdisciplinary Science, Chinese Academy of Sciences, the President Foundation of Academy of Mathematics and Systems Science, Chinese Academy of Sciences and the Program for Innovation Research in Central University of Finance and Economics
文摘We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and nonlinear eigenvalue problems on the coarsest finite element space. The linearized boundary value problems are solved by some multigrid iterations.Besides the multigrid iteration, all other efficient iteration methods for solving boundary value problems can serve as the linear problem solver. We prove that the computational work of this new scheme is truly optimal,the same as solving the linear corresponding boundary value problem. In this case, this type of iteration scheme certainly improves the overfull efficiency of solving nonlinear eigenvalue problems. Some numerical experiments are presented to validate the efficiency of the new method.
基金supported by the National Basic Research Program(No.2005CB321702)the China Outstanding Young Scientist F0undation(No.10525102)the National Natural Science Foundation (No.10471146),P.R.China
文摘We study the smooth LU decomposition of a given analytic functional A-matrix A(A) and its block-analogue. Sufficient conditions for the existence of such matrix decompositions are given, some differentiability about certain elements arising from them are proved, and several explicit expressions for derivatives of the specified elements are provided. By using these smooth LU decompositions, we propose two numerical methods for computing multiple nonlinear eigenvalues of A(A), and establish their locally quadratic convergence properties. Several numerical examples are provided to show the feasibility and effectiveness of these new methods.
基金This work is supported by Natural Science Foundation of Xinjiang(Grant No.2018D01A01).
文摘Shifted symmetric higher-order power method(SS-HOPM)has been proved e ective in solving the nonlinear eigenvalue problem oriented from the Bose-Einstein Condensation(BEC-like NEP for short)both theoretically and numerically.However,the convergence of the sequence generated by SS-HOPM is based on the assumption that the real eigenpairs of BEC-like NEP are nite.In this paper,we will establish the point-wise convergence via Lojasiewicz inequality by introducing a new related sequence.
文摘In this paper we consider the existence of infinitely many positive solutions for second order nonlinear eigenvalue problem with singular coefficient function. By the use of Krasnosel'skii fixed point theorem of cone expansion-compression type we give several sufficient conditions.
基金This work was partially supported by the National Science Foundation of China under grants 10871198 and 10971059the National Basic Research Program of China under grant 2005CB321704the National High Technology Research and Development Program of China under grant 2009AA01A134。
文摘In this paper,we study an adaptive finite element method for a class of nonlinear eigenvalue problems resulting from quantum physics that may have a nonconvex energy functional.We prove the convergence of adaptive finite element approximations and present several numerical examples of micro-structure of matter calculations that support our theory.
基金Singapore Ministry of Education grant No.R-146-000-083-112 and would like to thank Professor Tao Tang for very helpful discussion on the subject.
文摘In this paper we propose a uniformly convergent numerical method for discretizing singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation and quantum chemistry.We begin with the time-independent Gross-Pitaevskii equation and show how to reformulate it into a singularly perturbed nonlinear eigenvalue problem under a constraint.Matched asymptotic approximations for the problem are presented to locate the positions and characterize the widths of boundary layers and/or interior layers in the solution.A uniformly convergent numerical method is proposed by using the normalized gradient flow and piecewise uniform mesh techniques based on the asymptotic approximations for the problem.Extensive numerical results are reported to demonstrate the effectiveness of our numerical method for the problems.Finally,the method is applied to compute ground and excited states of Bose-Einstein condensation in the semiclassical regime and some conclusive findings are reported.
基金the National Natural Science Foundation of China(11261053)The Natural Science Foundation of Gansu Province(1308RJZA125)
文摘In this paper, we investigate a fourth-order three-point nonlinear eigenvalue problem. By the Krasnosel’skii’s fixed-point theorem in cone, some new results on the existence of positive solutions are obtained.
基金Project Supported by the National 973 Project(G1999075100)of Chinathe ExcellentPersonnel Supporting Plan of the Ministry of Education of China.
文摘In this paper, we determine the infimum and the supremum of the Dirich-let eigenvalues λn(p) (n = 1,2,…)of the problem t∈ ?[0,T], where 1 < p < ∞, and the weights p are nonnegative and are subject to conditions p(t)dt = M and max(e[0,T] p(t) = H. It is also explained for whatweights p the infimum and the supremum will be attained.
基金supported in part by NSF grants DMS-0611548 and OCI-0749217 and DOE grant DE-FC02-06ER25794supported in part by NSF of China under the contract number 10871049 and Shanghai Down project 200601.
文摘Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In this paper, we first study the existence and uniqueness of eigenvalues, and then investigate three numerical algorithms, namely Picard iteration, nonlinear Rayleigh quotient iteration and successive linear approximation method (SLAM). The global convergence of the SLAM is proven under some mild assumptions. Numerical examples illustrate that the SLAM is the most robust method.
文摘The transmission eigenvalue problem is an eigenvalue problem that arises in the scatter- ing of time-harmonic waves by an inhomogeneous medium of compact support. Based on a fourth order formulation, the transmission eigenvalue problem is discretized by the Mor- ley element. For the resulting quadratic eigenvalue problem, a recursive integral method is used to compute real and complex eigenvalues in prescribed regions in the complex plane. Numerical examples are presented to demonstrate the effectiveness of the proposed method.
基金the financial support received from the Poznan University of Technology(Grant No.DS 11-088/12)in connection with this work.
文摘The focus of this paper is on determination of the dynamic parameters of structural systems with viscoelastic (VE) dampers described by Maxwell rheological models. Such parameters could be obtained after solving the appropriately defined nonlinear eigenvalue problem for frames with VE dampers. The solution to the nonlinear eigenvalue problem is obtained by equating to zero the determinant of the considered system of equations. Apart from complex conjugate eigenvalues, the real ones occurred when dampers that are described by the classic Maxwell model, are also determined.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11972151 and 11872176)。
文摘In previous research on the nonlinear dynamics of cable-stayed bridges,boundary conditions were not properly modeled in the modeling.In order to obtain the nonlinear dynamics of cable-stayed bridges more accurately,a double-cable-stayed shallow-arch model with elastic supports at both ends and the initial configuration of bridge deck included in the modeling is developed in this study.The in-plane eigenvalue problems of the model are solved by dividing the shallow arch(SA)into three partitions according to the number of cables and the piecewise functions are taken as trial functions of the SA.Then,the in-plane one-toone-to-one internal resonance among the global mode and the local modes(two cables’modes)is investigated when external primary resonance occurs.The ordinary differential equations(ODEs)are obtained by Galerkin’s method and solved by the method of multiple time scales.The stable equilibrium solutions of modulation equations are obtained by using the NewtonRaphson method.In addition,the frequency-/force-response curves under different vertical stiffness are provided to study the nonlinear dynamic behaviors of the elastically supported model.To validate the theoretical analyses,the Runge-Kutta method is applied to obtain the numerical solutions.Finally,some interesting conclusions are drawn.
基金Supported by the National Basic Research Programme(2012CB720500)the National Natural Science Foundation of China(21306100)
文摘The major difficulty in achieving good performance of industrial polymerization reactors lies in the lack of understanding of their nonlinear dynamics and the lack of well-developed techniques for the control of nonlinear processes, which are usually accompanied with bifurcation phenomenon. This work aims at investigating the nonlinear behavior of the parameterized nonlinear system of vinyl acetate polymerization and further modifying the bifurcation characteristics of this process via a washout filter-aid controller, with all the original steady state equilibria preserved. Advantages and possible extensions of the proposed methodology are discussed to provide scientific guide for further controller design and operation improvement.
文摘In this paper we study the existence of nontrivial solutions of a class of asymptotically linear elliptic resonant problems at higher eigenvalues with the nonlinear term which may be un- bounded by making use of the Morse theory for a C^2-function at both isolated critical point and infinity.
基金supported by the Fédération de Mathématiques des Pays de la Loire,CNRS FR 2962。
文摘In this article we are interested in the numerical computation of spectra of non-self adjoint quadratic operators,in two and three spatial dimensions.Indeed,in the multidimensional case very few results are known on the location of the eigenvalues.This leads to solve nonlinear eigenvalue problems.In introduction we begin with a review of theoretical results and numerical results obtained for the one dimensional case.Then we present the numerical methods developed to compute the spectra(finite difference discretization)for the two and three dimensional cases.The numerical results obtained are presented and analyzed.One difficulty here is that we have to compute eigenvalues of strongly non-self-adjoint operators which are unstable.This work is in continuity of a previous work in one spatial dimension[3].
基金Supported by the National Basic Research PrioritiesProgram me of China (No.G19990 75 10 8) and theTRAPOYT of the Ministry of Education of China
文摘Rotation numbers are used in this paper to study the periodic and anti-periodic eigenvalues of the one-dimensional p-Laplacian with a periodic weight which changes sign. The analysis proves that for any nonnegative integer n, ρ -1(n/2) is the union of two closed intervals, one of which lies in [FK(W+3mm?3mm][TPP533A,+3mm?2mm] + and the other in [FK(W+3mm?3mm][TPP533A,+3mm?2mm] -, and the endpoints of these intervals yield the corresponding periodic and anti-periodic eigenvalues.
文摘In this paper we apply a cone theoretic fixed-point theorem proved by Krasnosel'skii to obtain sufficient conditions for the existence of positive solutions to some boundary value problems for a class of functional difference equations. We consider the case that the nonlinear term satisfies asvrnntoticallv linear growth.