The effects of the built environment factors on urban vitality have attracted wide attention in the urban planning fields in recent years,but few studies have considered the variables’relative importance and their no...The effects of the built environment factors on urban vitality have attracted wide attention in the urban planning fields in recent years,but few studies have considered the variables’relative importance and their nonlinear effects on urban vitality.Taking a Chinese metropolis—Hangzhou as a case study,this study applied the gradient boosting decision tree(GBDT)model to explore the nonlinear effects of the 5D factors of the urban built environment on urban social vitality and economic vitality and the importance of variables.The results show that the GBDT model has better goodness of fit than the traditional ordinary least squares(OLS)regression in the urban vitality models.The urban built environment plays an important role in affecting urban vitality,while built environment designs witness the most important effect.Specifically,the density of shopping facilities,medical facilities,and road networks are the most important factors affecting urban social vitality,while road network density,destination accessibility,and population density play the most important roles in affecting urban economic vitality.Finally,the urban built environment factors have nonlinear threshold effects on both urban economic and social vitality in Hangzhou,with differing nonlinear response patterns observed between social and economic dimensions.展开更多
The calcium fluoride(CaF_(2))whispering gallery mode crystalline resonator is an excellent platform for nonlinear optical applications because of the decreasing in threshold caused by ultrahigh quality(Q)factor.In thi...The calcium fluoride(CaF_(2))whispering gallery mode crystalline resonator is an excellent platform for nonlinear optical applications because of the decreasing in threshold caused by ultrahigh quality(Q)factor.In this paper,we achieved the observation of Raman lasing,first-order Raman comb,and second-order Raman lasing in a CaF_(2)disk resonator with a diameter of 4.96 mm and an ultrahigh-Q of 8.43×10^(8)at 1550-nm wavelength.We also observed thermal effects in CaF_(2)disk resonator,and the threshold of thermo-optical oscillation is approximately coincident with Raman lasing,since the intracavity power increases rapidly when the power reaches the threshold,and higher input pump power results in longer thermal drift and higher Raman emission power.With a further increase in pump power,the optical frequency combs range is from 1520 nm to 1650 nm,with a wavelength interval of 4×FSR.It is a promising candidate for optical communication,biological environment monitoring,spectral analysis,and microwave signal sources.展开更多
In this work,a new structure is used to enhance the nonlinear effect in the cavity,which improvesthe performance of the 1.3μm broadband swept source.The swept source adopts a semiconductoroptical amplifier(SOA),a cir...In this work,a new structure is used to enhance the nonlinear effect in the cavity,which improvesthe performance of the 1.3μm broadband swept source.The swept source adopts a semiconductoroptical amplifier(SOA),a circulator,a coupler,and a tunable filter.In the structure,the lightpasses through the nonlinear medium(SOA)twice in two opposite directions,which excites thenonlinear ffect and increases the performance of the swept source.The tunable filter is based on apolygon rotating mirror and gratings.Traditionally,multiple SOAs are adopted to improve thesweep range and the optical power,which increases the cost and complexity of the swept source.The method proposed in this paper can improve the spectral range and optical power of the sweptsources without additional accessories.For the short-cavity swept source,the power increasesfrom 6 mW to 7.7 mW,and the sweep range increases from 98 nm to 120 nm.The broadband swept sources could have wide applications in biomedical imaging,sensor system,measurementand so on.展开更多
Conventional methods for near-field characterization have typically relied on the nanoprobe to point-scan the field,rendering the measurements vulnerable to external environmental influences.Here,we study the direct f...Conventional methods for near-field characterization have typically relied on the nanoprobe to point-scan the field,rendering the measurements vulnerable to external environmental influences.Here,we study the direct far-field imaging of the near-field polarizations based on the four-wave mixing effect.We construct a simulation model to realize the instantaneous extraction of the near-field distributions of a wide range of structured light fields,such as cylindrical vector vortex beams,plasmonic Weber beams,and topological spin textures,including photonic skyrmions and merons.This method is valuable for the studies on manipulation of structured light fields and light-matter interaction at the micro/nano scales.展开更多
Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generali...Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail.展开更多
In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stag...In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stages seriously affects output accuracy and stability.To solve this problem,the motion characteristics of a rotating stage and the mechanism by which friction nonlinearity influences accuracy are analyzed in detail.In addition,a compound control strategy based on a kinematic model and the Stribeck friction model is designed.A friction disturbance observer based on output position feedback is improved for simple parameter tuning.Finally,an experimental system is constructed to carry out validation tests,including identification of nonlinear characteristics and performance comparisons.The experimental results show that the linear tracking error of the torque-type rotating stage is less than 1.47µm after adoption of the proposed model-based composite control strategy,and the corresponding rotary angle deviation is less than 0.0153°.The linearity of output motion is increased to 97.59%and the error compensation effect is improved by 51.6%compared with the PID control method.The experimental results confirm that the analysis method adopted here and the proposed compensation strategy can effectively reduce frictional nonlinearity and improve motion accuracy.The proposed method can also be applied to other precision electromechanical systems.展开更多
A drag-free satellite is an important platform for space-borne gravitational wave(GW)observation.To achieve the high-precision control of a drag-free satellite in practical engineering,an accurate dynamic model is ess...A drag-free satellite is an important platform for space-borne gravitational wave(GW)observation.To achieve the high-precision control of a drag-free satellite in practical engineering,an accurate dynamic model is essential.This paper presents a nonlinear model of the electrostatic effect between a satellite and a test mass(TM),and designs a model predictive controller based on the drag-free satellite model with the nonlinear electrostatic effect.To determine the analytical form of the electrostatic effect,a comprehensive theoretical analysis is performed for gravitational reference sensors(GRSs).An electrostatic force and a torque are simulated with the displacement as a varying parameter through a commercial software.Then,the results are fitted to derive the nonlinear expressions of the electrostatic effect.The model predictive controllers based on the models with the nonlinear and linear electrostatic effects are designed in the capture mode.Finally,the control results are given to show the advantages of the nonlinear electrostatic effect.展开更多
Materials,where charge carriers have a linear energy dispersion,usually exhibit a strong nonlinear optical response in the absence of disorder scattering.This nonlinear response is particularly interesting in the tera...Materials,where charge carriers have a linear energy dispersion,usually exhibit a strong nonlinear optical response in the absence of disorder scattering.This nonlinear response is particularly interesting in the terahertz frequency region.We present a theoretical and numerical investigation of charge transport and nonlinear effects,such as the high harmonic generation in topological materials including Weyl semimetals(WSMs)and α-T_(3)systems.The nonlinear optical conductivity is calculated both semi-classically using the velocity operator and quantum mechanically using the density matrix.We show that the nonlinear response is strongly dependent on temperature and topological parameters,such as the Weyl point(WP)separation b and Berry phase ФB.A finite spectral gap opening can further modify the nonlinear effects.Under certain parameters,universal behaviors of both the linear and nonlinear response can be observed.Coupled with experimentally accessible critical field values of 10^(4)-10^(5) V=m,our results provide useful information on developing nonlinear optoelectronic devices based on topological materials.展开更多
This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and th...This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and their applications to nonlinear signal processing.展开更多
A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The cont...A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The continuous inhomogeneous models of equivalent porosity and permeability are proposed for the whole shale gas reservoir includ- ing the hydraulic fracture, the micro-fracture, and the matrix regions. The corresponding semi-analytical method is developed by transforming the nonlinear partial differential governing equation into the integral equation and the numerical discretization. The nonlinear multi-scale effects of slippage and diffusion and the pressure dependent effect of desorption on the shale gas production are investigated.展开更多
In the present paper, we use the Markov-switching model to test the nonlinear effects of government expenditure and taxes on private consumption in China. The results show that fiscal policy in China has a significant...In the present paper, we use the Markov-switching model to test the nonlinear effects of government expenditure and taxes on private consumption in China. The results show that fiscal policy in China has a significantly nonlinear effect. In years 1978-1980 and 1984- 1997, the effect of government consumption on private consumption is non-Keynesian. During the same periods, the effect of taxes is also non-Keynesian, but the effect is not significant. The effect of government investment is linear but asymmetric. After retesting the reasons for the existence of nonlinear effects, we find that in China initial fiscal conditions and the magnitude of fiscal consolidations are not related to the nonlinear effects of fiscal policy. The government should pay close attention to the characteristics of commodity and labor markets to identify the conditions and regimes associated with nonlinear effects.展开更多
We study the effects of mechanical nonlinearity arising from large thickness-shear deformation on the transient process of an AT-cut quartz plate resonator. Mindlin's two-dimensional plate equation is used, from whic...We study the effects of mechanical nonlinearity arising from large thickness-shear deformation on the transient process of an AT-cut quartz plate resonator. Mindlin's two-dimensional plate equation is used, from which a system of first-order nonlinear differential equations governing the evolution of the vibration amplitude is obtained. Numerical solutions by the Runge-Kutta method show that in common operating conditions of quartz resonators the nonlinear effect varies from noticeable to significant. As resonators are to be made smaller and thinner in the future with about the same power requirement, nonlinear effects will become more important and need more understanding and consideration in resonator design.展开更多
Knowledge of asymmetric catalytic reaction mechanism is very important for rational design and synthesis of new chiral catalysts or catalytic systems with high catalytic activity and stereoselectivity.The studies of n...Knowledge of asymmetric catalytic reaction mechanism is very important for rational design and synthesis of new chiral catalysts or catalytic systems with high catalytic activity and stereoselectivity.The studies of nonlinear effect have attracted wide attentions as a simple and practical mechanistic tool to probe complex asymmetric catalytic reactions.展开更多
Reducing carbon emissions from the transport sector is essential for realizing the carbon neutrality goal in China.Despite substantial studies on the influence of urban form on transport cO_(2)emissions,most of them h...Reducing carbon emissions from the transport sector is essential for realizing the carbon neutrality goal in China.Despite substantial studies on the influence of urban form on transport cO_(2)emissions,most of them have treated the effects as a linear process,and few have studied their nonlinear relationships.This research focused on 274 Chinese cities in 2019 and applied the gradient-boosting decision tree(GBDT)model to investigate the nonlinear effects of four aspects of urban form,including compactness,complexity,scale,and fragmentation,on urban transport CO_(2)emissions.It was found that urban form contributed 20.48%to per capita transport CO_(2)emissions(PTCEs),which is less than the contribution of socioeconomic development but more than that of transport infrastructure.The contribution of urban form to total transport CO_(2)emissions(TCEs)was the lowest,at 14.3%.In particular,the effect of compactness on TCEs was negative within a threshold,while its effect on PTCEs showed an inverted U-shaped relationship.The effect of complexity on PTCEs was positive,and its effect on TCEs was nonlinear.The effect of scale on TCEs and PTCEs was positive within a threshold and negative beyond that threshold.The effect of fragmentation on TCEs was also nonlinear,while its effect on PTCEs was positively linear.These results show the complex effects of the urban form on transport CO_(2)emissions.Thus,strategies for optimizing urban form and reducing urban transport carbon emissions are recommended for the future.展开更多
The objective of the present investigation is to predict the nonlinear buckling and postbuckling characteristics of cylindrical shear deformable nanoshells with and without initial imperfection under hydrostatic press...The objective of the present investigation is to predict the nonlinear buckling and postbuckling characteristics of cylindrical shear deformable nanoshells with and without initial imperfection under hydrostatic pressure load in the presence of surface free energy effects.To this end, Gurtin-Murdoch elasticity theory is implemented into the irst-order shear deformation shell theory to develop a size-dependent shell model which has an excellent capability to take surface free energy effects into account. A linear variation through the shell thickness is assumed for the normal stress component of the bulk to satisfy the equilibrium conditions on the surfaces of nanoshell. On the basis of variational approach and using von Karman-Donnell-type of kinematic nonlinearity, the non-classical governing differential equations are derived. Then a boundary layer theory of shell buckling is employed incorporating the effects of surface free energy in conjunction with nonlinear prebuckling deformations, large delections in the postbuckling domain and initial geometric imperfection. Finally, an eficient solution methodology based on a two-stepped singular perturbation technique is put into use in order to obtain the critical buckling loads and postbuckling equilibrium paths corresponding to various geometric parameters. It is demonstrated that the surface free energy effects cause increases in both the critical buckling pressure and critical end-shortening of a nanoshell made of silicon.展开更多
In this paper, we using phase plane method have derived the stability criteria of linear and nonlinear Rossby waves under the conditions of semi-geostrophic approximation and have gotten the solutions and geostrophic ...In this paper, we using phase plane method have derived the stability criteria of linear and nonlinear Rossby waves under the conditions of semi-geostrophic approximation and have gotten the solutions and geostrophic vorticity of corresponding solitary Rossby waves. It is pointed out that the wave stability is connected with the distribution of zonal flow and when the zonal flow is different the solitary wave trough or ridge is formed.展开更多
We propose a novel scheme for the population and depletion of nuclear isomers.This scheme combines the γ photons with energiesà 10 keV emitted during the interaction of a contemporary high-intensity laser pulse ...We propose a novel scheme for the population and depletion of nuclear isomers.This scheme combines the γ photons with energiesà 10 keV emitted during the interaction of a contemporary high-intensity laser pulse with a plasma and one or multiple photon beams supplied by intense lasers.Owing to nonlinear effects,two-or multiphoton absorption dominates over the conventional multistep one-photon process for an optimized γ flash.Moreover,this nonlinear effect can be greatly enhanced with the help of externally supplied low-energy photons coming from another laser.These low-energy photons act such that the effective cross-section experienced by the γ photons becomes tunable,growing with the intensity I_(0) of the beam.Assuming I_(0)~10^(18) W·cm^(-2) for the photon beam,an effective cross-section as large as 10^(-21)-10^(-28) cm^(2) for the γ photons can be achieved.Thus,with state-of-the-art 10 PW laser facilities,the yields from two-photon absorption can reach 10^(6)-10^(9) isomers per shot for selected states that are separated from their ground state by E2 transitions.Similar yields for transitions with higher multipolarities can be accommodated by multiphoton absorption with additional photons provided.展开更多
Uncovering the evolution process of rural revitalization level(RRL)in China and elucidating the complex driving mechanism hold significant implications for implementing rural revitalization strategy and advancing rura...Uncovering the evolution process of rural revitalization level(RRL)in China and elucidating the complex driving mechanism hold significant implications for implementing rural revitalization strategy and advancing rural modernization.This study analyzes the spatio-temporal evolution of China's RRL from 2002 to 2022 and reveals its complex driving mechanism.The results show that China's RRL steadily increased from 0.1083 to 0.4463,and the provincial RRL exhibited the characteristic of decreasing successively in the eastern region,the central region,and the western region.The overall differences of RRL are shrinking,and intra-group differences contribute almost 1/3 of the overall variation,more than the contribution of inter-group differences.Although the influencing factors show nonlinear characteristics,on the whole,economic level and human capital exhibit positive effects,while relief degree,urbanization,industrialization,and opening degree exhibit negative effects.Farmland resources and investment intensity exhibit the characteristics of positive effect and negative effect equilibrium.At the regional scale,influencing factors exhibit significant spatio-temporal heterogeneity.In the future,to achieve comprehensive rural revitalization,it is vital to implement systemic policy measures,such as enhancing industrial competitiveness,supplementing rural talents,and optimizing the relations between urban and rural areas as well as between industry and agriculture.展开更多
Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in de...Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in dealing with the nonlinear waves in practice. In this paper, a modified form of mild-slope equation with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation. The modified form of mild-slope equation is convenient to solve nonlinear effect of waves. The model is tested against the laboratory measurement for the case of a submerged elliptical shoal on a slope beach given by Berkhoff et al. The present numerical results are also compared with those obtained through linear wave theory. Better agreement is obtained as the modified mild-slope equation is employed. And the modified mild-slope equation can reasonably simulate the weakly nonlinear effect of wave propagation from deep water to coast.展开更多
Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measure...Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector-camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method.展开更多
基金National Social Science Foundation of China,No.20FJLB025National Natural Science Foundation of China,No.42471207,No.42471203Zhejiang Province Philosophy and Social Science Planning,Zhijiang Youth Special Project,24ZJQN118Y。
文摘The effects of the built environment factors on urban vitality have attracted wide attention in the urban planning fields in recent years,but few studies have considered the variables’relative importance and their nonlinear effects on urban vitality.Taking a Chinese metropolis—Hangzhou as a case study,this study applied the gradient boosting decision tree(GBDT)model to explore the nonlinear effects of the 5D factors of the urban built environment on urban social vitality and economic vitality and the importance of variables.The results show that the GBDT model has better goodness of fit than the traditional ordinary least squares(OLS)regression in the urban vitality models.The urban built environment plays an important role in affecting urban vitality,while built environment designs witness the most important effect.Specifically,the density of shopping facilities,medical facilities,and road networks are the most important factors affecting urban social vitality,while road network density,destination accessibility,and population density play the most important roles in affecting urban economic vitality.Finally,the urban built environment factors have nonlinear threshold effects on both urban economic and social vitality in Hangzhou,with differing nonlinear response patterns observed between social and economic dimensions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51727808,51922009,52005457,and 62004179)the Fund from the Key Laboratory of Quantum Sensing and Precision Measurement of Shanxi Province,China(Grant No.201905D121001)。
文摘The calcium fluoride(CaF_(2))whispering gallery mode crystalline resonator is an excellent platform for nonlinear optical applications because of the decreasing in threshold caused by ultrahigh quality(Q)factor.In this paper,we achieved the observation of Raman lasing,first-order Raman comb,and second-order Raman lasing in a CaF_(2)disk resonator with a diameter of 4.96 mm and an ultrahigh-Q of 8.43×10^(8)at 1550-nm wavelength.We also observed thermal effects in CaF_(2)disk resonator,and the threshold of thermo-optical oscillation is approximately coincident with Raman lasing,since the intracavity power increases rapidly when the power reaches the threshold,and higher input pump power results in longer thermal drift and higher Raman emission power.With a further increase in pump power,the optical frequency combs range is from 1520 nm to 1650 nm,with a wavelength interval of 4×FSR.It is a promising candidate for optical communication,biological environment monitoring,spectral analysis,and microwave signal sources.
基金supported by the National Key R&D Program of China(2016YFF0102003 and 2016YFF0102000).
文摘In this work,a new structure is used to enhance the nonlinear effect in the cavity,which improvesthe performance of the 1.3μm broadband swept source.The swept source adopts a semiconductoroptical amplifier(SOA),a circulator,a coupler,and a tunable filter.In the structure,the lightpasses through the nonlinear medium(SOA)twice in two opposite directions,which excites thenonlinear ffect and increases the performance of the swept source.The tunable filter is based on apolygon rotating mirror and gratings.Traditionally,multiple SOAs are adopted to improve thesweep range and the optical power,which increases the cost and complexity of the swept source.The method proposed in this paper can improve the spectral range and optical power of the sweptsources without additional accessories.For the short-cavity swept source,the power increasesfrom 6 mW to 7.7 mW,and the sweep range increases from 98 nm to 120 nm.The broadband swept sources could have wide applications in biomedical imaging,sensor system,measurementand so on.
基金supported by the Guangdong Major Project of Basic Research(No.2020B0301030009)the National Natural Science Foundation of China(Nos.62075139,61935013,and 12004260)+4 种基金the Natural Science Foundation of Guangdong(No.2024A1515012503)the Innovation Team Project of Ordinary University of Guangdong Provincial Education Bureau(No.2024KCXTD014)the Shenzhen Science and Technology Program(Nos.RCJC20200714114435063 and JCYJ20241202124532024)the Research Team Cultivation Program of Shenzhen University(No.2023QNT012)the Shenzhen University 2035 Initiative(No.2023B004)。
文摘Conventional methods for near-field characterization have typically relied on the nanoprobe to point-scan the field,rendering the measurements vulnerable to external environmental influences.Here,we study the direct far-field imaging of the near-field polarizations based on the four-wave mixing effect.We construct a simulation model to realize the instantaneous extraction of the near-field distributions of a wide range of structured light fields,such as cylindrical vector vortex beams,plasmonic Weber beams,and topological spin textures,including photonic skyrmions and merons.This method is valuable for the studies on manipulation of structured light fields and light-matter interaction at the micro/nano scales.
基金Project supported by the National Natural Science Foundation of China(Grant No.12271096)the Natural Science Foundation of Fujian Province(Grant No.2021J01302)。
文摘Under investigation is the n-component nonlinear Schrödinger equation with higher-order effects,which describes the ultrashort pulses in the birefringent fiber.Based on the Lax pair,the eigenfunction and generalized Darboux transformation are derived.Next,we construct several novel higher-order localized waves and classified them into three categories:(i)higher-order rogue waves interacting with bright/antidark breathers,(ii)higher-order breather fission/fusion,(iii)higherorder breather interacting with soliton.Moreover,we explore the effects of parameters on the structure,collision process and energy distribution of localized waves and these characteristics are significantly different from previous ones.Finally,the dynamical properties of these solutions are discussed in detail.
基金funded by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement(Grant No.101026104)by the National Natural Science Foundation of China(Grant No.U20A6004)in part by the State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment(Grant No.JMDZ202314).
文摘In semiconductor precision packaging and other applications involving alignment of automated equipment,the nonlinear motion caused by structural characteristics and friction effects on torque-type rotating motion stages seriously affects output accuracy and stability.To solve this problem,the motion characteristics of a rotating stage and the mechanism by which friction nonlinearity influences accuracy are analyzed in detail.In addition,a compound control strategy based on a kinematic model and the Stribeck friction model is designed.A friction disturbance observer based on output position feedback is improved for simple parameter tuning.Finally,an experimental system is constructed to carry out validation tests,including identification of nonlinear characteristics and performance comparisons.The experimental results show that the linear tracking error of the torque-type rotating stage is less than 1.47µm after adoption of the proposed model-based composite control strategy,and the corresponding rotary angle deviation is less than 0.0153°.The linearity of output motion is increased to 97.59%and the error compensation effect is improved by 51.6%compared with the PID control method.The experimental results confirm that the analysis method adopted here and the proposed compensation strategy can effectively reduce frictional nonlinearity and improve motion accuracy.The proposed method can also be applied to other precision electromechanical systems.
基金supported by the National Key Research and Development Program of China(No.2022YFC2204800)the National Natural Science Foundation of China(No.W2433004)the Jiangsu Funding Program for Excellent Postdoctoral Talent of China(No.2024ZB114)。
文摘A drag-free satellite is an important platform for space-borne gravitational wave(GW)observation.To achieve the high-precision control of a drag-free satellite in practical engineering,an accurate dynamic model is essential.This paper presents a nonlinear model of the electrostatic effect between a satellite and a test mass(TM),and designs a model predictive controller based on the drag-free satellite model with the nonlinear electrostatic effect.To determine the analytical form of the electrostatic effect,a comprehensive theoretical analysis is performed for gravitational reference sensors(GRSs).An electrostatic force and a torque are simulated with the displacement as a varying parameter through a commercial software.Then,the results are fitted to derive the nonlinear expressions of the electrostatic effect.The model predictive controllers based on the models with the nonlinear and linear electrostatic effects are designed in the capture mode.Finally,the control results are given to show the advantages of the nonlinear electrostatic effect.
文摘Materials,where charge carriers have a linear energy dispersion,usually exhibit a strong nonlinear optical response in the absence of disorder scattering.This nonlinear response is particularly interesting in the terahertz frequency region.We present a theoretical and numerical investigation of charge transport and nonlinear effects,such as the high harmonic generation in topological materials including Weyl semimetals(WSMs)and α-T_(3)systems.The nonlinear optical conductivity is calculated both semi-classically using the velocity operator and quantum mechanically using the density matrix.We show that the nonlinear response is strongly dependent on temperature and topological parameters,such as the Weyl point(WP)separation b and Berry phase ФB.A finite spectral gap opening can further modify the nonlinear effects.Under certain parameters,universal behaviors of both the linear and nonlinear response can be observed.Coupled with experimentally accessible critical field values of 10^(4)-10^(5) V=m,our results provide useful information on developing nonlinear optoelectronic devices based on topological materials.
文摘This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and their applications to nonlinear signal processing.
基金supported by the National Basic Research Program of China(973 Program)(No.2013CB228002)
文摘A unified mathematical model is established to simulate the nonlinear unsteady percolation of shale gas with the consideration of the nonlinear multi-scale effects such as slippage, diffusion, and desorption. The continuous inhomogeneous models of equivalent porosity and permeability are proposed for the whole shale gas reservoir includ- ing the hydraulic fracture, the micro-fracture, and the matrix regions. The corresponding semi-analytical method is developed by transforming the nonlinear partial differential governing equation into the integral equation and the numerical discretization. The nonlinear multi-scale effects of slippage and diffusion and the pressure dependent effect of desorption on the shale gas production are investigated.
基金supported by the Program for New Century Excellent Talents in University(NCET-10-0824)the Program of the Innovative Research Team of the Central University of Finance and Economics and the Program of Statistics Research in China(Grant number:2009LZ032)
文摘In the present paper, we use the Markov-switching model to test the nonlinear effects of government expenditure and taxes on private consumption in China. The results show that fiscal policy in China has a significantly nonlinear effect. In years 1978-1980 and 1984- 1997, the effect of government consumption on private consumption is non-Keynesian. During the same periods, the effect of taxes is also non-Keynesian, but the effect is not significant. The effect of government investment is linear but asymmetric. After retesting the reasons for the existence of nonlinear effects, we find that in China initial fiscal conditions and the magnitude of fiscal consolidations are not related to the nonlinear effects of fiscal policy. The government should pay close attention to the characteristics of commodity and labor markets to identify the conditions and regimes associated with nonlinear effects.
基金supported by the Program for New Century Excellent Talents in Universities(No.NCET-12-0625)the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.SBK2014010134)+2 种基金the Fundamental Research Funds for Central Universities(No.NE2013101)the National Natural Science Foundation of China(No.11232007)a project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘We study the effects of mechanical nonlinearity arising from large thickness-shear deformation on the transient process of an AT-cut quartz plate resonator. Mindlin's two-dimensional plate equation is used, from which a system of first-order nonlinear differential equations governing the evolution of the vibration amplitude is obtained. Numerical solutions by the Runge-Kutta method show that in common operating conditions of quartz resonators the nonlinear effect varies from noticeable to significant. As resonators are to be made smaller and thinner in the future with about the same power requirement, nonlinear effects will become more important and need more understanding and consideration in resonator design.
基金the National Key R&D Program of China(Grant No.2017YFA0700103)the NSFC(Grant Nos.22225107,21922112,21871258)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB20000000).
文摘Knowledge of asymmetric catalytic reaction mechanism is very important for rational design and synthesis of new chiral catalysts or catalytic systems with high catalytic activity and stereoselectivity.The studies of nonlinear effect have attracted wide attentions as a simple and practical mechanistic tool to probe complex asymmetric catalytic reactions.
基金National Natural Science Foundation of China,No.42071227,No.42371214。
文摘Reducing carbon emissions from the transport sector is essential for realizing the carbon neutrality goal in China.Despite substantial studies on the influence of urban form on transport cO_(2)emissions,most of them have treated the effects as a linear process,and few have studied their nonlinear relationships.This research focused on 274 Chinese cities in 2019 and applied the gradient-boosting decision tree(GBDT)model to investigate the nonlinear effects of four aspects of urban form,including compactness,complexity,scale,and fragmentation,on urban transport CO_(2)emissions.It was found that urban form contributed 20.48%to per capita transport CO_(2)emissions(PTCEs),which is less than the contribution of socioeconomic development but more than that of transport infrastructure.The contribution of urban form to total transport CO_(2)emissions(TCEs)was the lowest,at 14.3%.In particular,the effect of compactness on TCEs was negative within a threshold,while its effect on PTCEs showed an inverted U-shaped relationship.The effect of complexity on PTCEs was positive,and its effect on TCEs was nonlinear.The effect of scale on TCEs and PTCEs was positive within a threshold and negative beyond that threshold.The effect of fragmentation on TCEs was also nonlinear,while its effect on PTCEs was positively linear.These results show the complex effects of the urban form on transport CO_(2)emissions.Thus,strategies for optimizing urban form and reducing urban transport carbon emissions are recommended for the future.
文摘The objective of the present investigation is to predict the nonlinear buckling and postbuckling characteristics of cylindrical shear deformable nanoshells with and without initial imperfection under hydrostatic pressure load in the presence of surface free energy effects.To this end, Gurtin-Murdoch elasticity theory is implemented into the irst-order shear deformation shell theory to develop a size-dependent shell model which has an excellent capability to take surface free energy effects into account. A linear variation through the shell thickness is assumed for the normal stress component of the bulk to satisfy the equilibrium conditions on the surfaces of nanoshell. On the basis of variational approach and using von Karman-Donnell-type of kinematic nonlinearity, the non-classical governing differential equations are derived. Then a boundary layer theory of shell buckling is employed incorporating the effects of surface free energy in conjunction with nonlinear prebuckling deformations, large delections in the postbuckling domain and initial geometric imperfection. Finally, an eficient solution methodology based on a two-stepped singular perturbation technique is put into use in order to obtain the critical buckling loads and postbuckling equilibrium paths corresponding to various geometric parameters. It is demonstrated that the surface free energy effects cause increases in both the critical buckling pressure and critical end-shortening of a nanoshell made of silicon.
文摘In this paper, we using phase plane method have derived the stability criteria of linear and nonlinear Rossby waves under the conditions of semi-geostrophic approximation and have gotten the solutions and geostrophic vorticity of corresponding solitary Rossby waves. It is pointed out that the wave stability is connected with the distribution of zonal flow and when the zonal flow is different the solitary wave trough or ridge is formed.
基金supported by the Extreme Light Infrastructure Nuclear Physics(ELI-NP)Phase Ⅱ,a project co-financed by the Romanian Government and the European Union through the European Regional Development Fund—the Competitiveness Operational Programme(1/07.07.2016,COP,ID 1334)the Romanian Ministry of Research and Innovation:PN23210105(Phase 2,the Program Nucleu),ELI-RO grants Proiectul ELI-RO/RDI_2024_AMAP,ELI-RO_RDI_2024_LaLuThe,ELIRO_RDI_2024_SPARC+4 种基金ELI10/01.10.2020 of the Romanian Governmentthe European Union,the Romanian Governmentthe Health Program,within the project“Medical Applications of High-Power Lasers—Dr.LASER”SMIS Code:326475the IOSIN funds for research infrastructures of national interest.
文摘We propose a novel scheme for the population and depletion of nuclear isomers.This scheme combines the γ photons with energiesà 10 keV emitted during the interaction of a contemporary high-intensity laser pulse with a plasma and one or multiple photon beams supplied by intense lasers.Owing to nonlinear effects,two-or multiphoton absorption dominates over the conventional multistep one-photon process for an optimized γ flash.Moreover,this nonlinear effect can be greatly enhanced with the help of externally supplied low-energy photons coming from another laser.These low-energy photons act such that the effective cross-section experienced by the γ photons becomes tunable,growing with the intensity I_(0) of the beam.Assuming I_(0)~10^(18) W·cm^(-2) for the photon beam,an effective cross-section as large as 10^(-21)-10^(-28) cm^(2) for the γ photons can be achieved.Thus,with state-of-the-art 10 PW laser facilities,the yields from two-photon absorption can reach 10^(6)-10^(9) isomers per shot for selected states that are separated from their ground state by E2 transitions.Similar yields for transitions with higher multipolarities can be accommodated by multiphoton absorption with additional photons provided.
基金National Natural Science Foundation of China,No.42293271The Alliance of International Science Organizations,No.ANSO-PA-2023-16。
文摘Uncovering the evolution process of rural revitalization level(RRL)in China and elucidating the complex driving mechanism hold significant implications for implementing rural revitalization strategy and advancing rural modernization.This study analyzes the spatio-temporal evolution of China's RRL from 2002 to 2022 and reveals its complex driving mechanism.The results show that China's RRL steadily increased from 0.1083 to 0.4463,and the provincial RRL exhibited the characteristic of decreasing successively in the eastern region,the central region,and the western region.The overall differences of RRL are shrinking,and intra-group differences contribute almost 1/3 of the overall variation,more than the contribution of inter-group differences.Although the influencing factors show nonlinear characteristics,on the whole,economic level and human capital exhibit positive effects,while relief degree,urbanization,industrialization,and opening degree exhibit negative effects.Farmland resources and investment intensity exhibit the characteristics of positive effect and negative effect equilibrium.At the regional scale,influencing factors exhibit significant spatio-temporal heterogeneity.In the future,to achieve comprehensive rural revitalization,it is vital to implement systemic policy measures,such as enhancing industrial competitiveness,supplementing rural talents,and optimizing the relations between urban and rural areas as well as between industry and agriculture.
文摘Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in dealing with the nonlinear waves in practice. In this paper, a modified form of mild-slope equation with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation. The modified form of mild-slope equation is convenient to solve nonlinear effect of waves. The model is tested against the laboratory measurement for the case of a submerged elliptical shoal on a slope beach given by Berkhoff et al. The present numerical results are also compared with those obtained through linear wave theory. Better agreement is obtained as the modified mild-slope equation is employed. And the modified mild-slope equation can reasonably simulate the weakly nonlinear effect of wave propagation from deep water to coast.
基金Project supported by the Science and Technology Major Projects of Zhejiang Province,China(Grant No.2013C03043-5)
文摘Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector-camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method.