期刊文献+
共找到143篇文章
< 1 2 8 >
每页显示 20 50 100
Delocalized Nonlinear Vibrational Modes in Bcc Lattice for Testing and Improving Interatomic Potentials
1
作者 Denis S.Ryabov IgorV.Kosarev +2 位作者 Daxing Xiong Aleksey A.Kudreyko Sergey V.Dmitriev 《Computers, Materials & Continua》 2025年第3期3797-3820,共24页
Molecular dynamics(MD)is a powerful method widely used in materials science and solid-state physics.The accuracy of MD simulations depends on the quality of the interatomic potentials.In this work,a special class of e... Molecular dynamics(MD)is a powerful method widely used in materials science and solid-state physics.The accuracy of MD simulations depends on the quality of the interatomic potentials.In this work,a special class of exact solutions to the equations of motion of atoms in a body-centered cubic(bcc)lattice is analyzed.These solutions take the form of delocalized nonlinear vibrational modes(DNVMs)and can serve as an excellent test of the accuracy of the interatomic potentials used in MD modeling for bcc crystals.The accuracy of the potentials can be checked by comparing the frequency response of DNVMs calculated using this or that interatomic potential with that calculated using the more accurate ab initio approach.DNVMs can also be used to train new,more accurate machine learning potentials for bcc metals.To address the above issues,it is important to analyze the properties of DNVMs,which is the main goal of this work.Considering only the point symmetry groups of the bcc lattice,34 DNVMs are found.Since interatomic potentials are not used in finding DNVMs,they are exact solutions for any type of potential.Here,the simplest interatomic potentials with cubic anharmonicity are used to simplify the analysis and to obtain some analytical results.For example,the dispersion relations for small-amplitude phonon modes are derived,taking into account interactions between up to the fourth nearest neighbor.The frequency response of the DNVMs is calculated numerically,and for some DNVMs examples of analytical analysis are given.The energy stored by the interatomic bonds of different lengths is calculated,which is important for testing interatomic potentials.The pros and cons of using DNVMs to test and improve interatomic potentials for metals are discussed.Since DNVMs are the natural vibrational modes of bcc crystals,any reliable interatomic potential must reproduce their properties with reasonable accuracy. 展开更多
关键词 Interatomic potentials molecular dynamics bcc lattice long-range interactions dispersion relation nonlinear dynamics exact solution delocalized nonlinear vibrational mode
在线阅读 下载PDF
Nonlinear vibration and stability analysis of an aero-engine dual-rotor system subjected to high-frequency excitation
2
作者 Rongzhou LIN Shuangxing REN +5 位作者 Lei HOU Zeyuan CHANG Zhonggang LI Yushu CHEN Nasser A.SAEED Mohamed S.MOHAMED 《Chinese Journal of Aeronautics》 2025年第7期227-247,共21页
This paper analyzes the nonlinear dynamic characteristics and stability of Aero-Engine Dual-Rotor(AEDR)systems under high-frequency excitation,based on the Adaptive Harmonic Balance with the Asymptotic Harmonic Select... This paper analyzes the nonlinear dynamic characteristics and stability of Aero-Engine Dual-Rotor(AEDR)systems under high-frequency excitation,based on the Adaptive Harmonic Balance with the Asymptotic Harmonic Selection(AHB-AHS)method.A finite element dynamic equation for the AEDR system is introduced,considering complex nonlinearities of the intershaft bearing,unbalanced excitations,and high-frequency excitation.A solving strategy combining the AHB-AHS method and improved arclength continuation method is proposed to solve highdimensional dynamic equations containing complex nonlinearities and to track periodic solutions with parameter variations.The Floquet theory is used to analyze the types of bifurcation points in the system and the stability of periodic motions.The results indicate that high-frequency excitation can couple high-order and low-order modes,especially when the system undergoes superharmonic resonance.High-frequency excitation leads to more combination frequency harmonics,among which N_(f)ω_(1)-2ω_(2)dominates.Furthermore,changing the parameters(amplitude and frequency)of high-frequency excitation widens or shifts the unstable regions of the system.These findings contribute to understanding the mechanism of high-frequency excitation on aero-engines and demonstrate that the proposed AHB-AHS method is a powerful tool for analyzing highdimensional complex nonlinear dynamic systems under multi-frequency excitation. 展开更多
关键词 AERO-ENGINE nonlinear vibration High-dimensional rotor system INSTABILITY Harmonic balance method Adaptive harmonic balance method
原文传递
Stabilities Analysis of Electromechanical Nonlinear Vibration of Electric Machine
3
作者 贾启芬 邱家俊 于雯 《Transactions of Tianjin University》 EI CAS 2002年第3期170-173,共4页
An electromechanical nonlinear model of rotor system of electric machine is built.Respondance curves in parameter excited nonlinear vibration of this system caused by electromagnetic forces are investigated.Further mo... An electromechanical nonlinear model of rotor system of electric machine is built.Respondance curves in parameter excited nonlinear vibration of this system caused by electromagnetic forces are investigated.Further more,the analysis reveals the effects of various electromagnetic and mechanical parameters on resonances, and some valuable results are obtained.The analytical result of this paper provides electric machine with the condition of 1/2 subharmonic resonance under the electromechanical electromagnetic forces.Electromagnetic forces apparently affect the stability zone, and both linear term and nonlinear term can excite parametric resonance.The revealed dynamic phenomena provide some new theories and active methods for the fault recognition of electric machine and the defination of stability range,and the theoretical bases for qualitatively controlling the stable operating state of rotors. 展开更多
关键词 electromechanical system nonlinear vibration 1/2 subharmonic resonance STABILITY
在线阅读 下载PDF
A dynamic modeling approach for nonlinear vibration analysis of the L-type pipeline system with clamps 被引量:16
4
作者 Qingdong CHAI Jin ZENG +2 位作者 Hui MA Kun LI Qingkai HAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3253-3265,共13页
There exists a lot of research on the nonlinear vibration of the pipeline system with different boundary conditions.To the best of our knowledge,little research on the actual constraint of the clamp has been performed... There exists a lot of research on the nonlinear vibration of the pipeline system with different boundary conditions.To the best of our knowledge,little research on the actual constraint of the clamp has been performed.In this paper,according to hysteresis loops of the clamp obtained from experimental test,the simplified bilinear stiffness and damping model is proposed.Then the Finite Element(FE)model of L-type pipeline system with clamps is established using Timoshenko beam theory in combination with aforementioned stiffness-damping model.Both hammering and shaker tests verify the FE model via the comparisons of natural frequencies and vibration responses.The results show that the maximum errors of natural frequencies and vibration responses are about 8.31%and 17.6%,respectively.The proposed model can simulate the dynamic characteristics of the L-type pipeline system with clamps well,which is helpful to provide some guidance for the early design stage of pipeline in aero-engine. 展开更多
关键词 CLAMP Dynamic modeling Experimental test Finite element nonlinear vibration PIPELINE
原文传递
A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms 被引量:7
5
作者 Bo YAN Ning YU Chuanyu WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第7期1045-1062,共18页
Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isola... Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations,especially in aerospace,mechanical,and architectural engineering,etc.Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously,which limits further engineering application,especially in the low-frequency range.In recent twenty years,the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities.One of the most widely studied objects is the"three-spring"configured quasi-zero-stiffness(QZS)vibration isolator,which can realize the negative stiffness and high-static-low-dynamic stiffness(HSLDS)characteristics.The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance.Due to the characteristics of fast response,strong stroke,nonlinearities,easy control,and low-cost,the nonlinear vibration with electromagnetic mechanisms has attracted attention.In this review,we focus on the basic theory,design methodology,nonlinear damping mechanism,and active control of electromagnetic QZS vibration isolators.Furthermore,we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation. 展开更多
关键词 quasi-zero-stiffness(QZS) nonlinear vibration isolation LOW-FREQUENCY electromagnetic vibration isolation BISTABLE
在线阅读 下载PDF
Stability and nonlinear vibrations of a flexible pipe parametrically excited by an internal varying flow density 被引量:6
6
作者 W.D.Xie X.F.Gao W.H.Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第1期206-219,共14页
Pipes are often used to transport multiphase flows in many engineering applications.The total fluid flow density inside a pipe may vary with time and space.In this paper,a simply supported pipe conveying a variable de... Pipes are often used to transport multiphase flows in many engineering applications.The total fluid flow density inside a pipe may vary with time and space.In this paper,a simply supported pipe conveying a variable density flow is modeled theoretically,and its stability and nonlinear vibrations are investigated in detail.The variation of the flow density is simulated using a mathematical function.The equation governing the vibration of the pipe is derived according to Euler-Bernoulli beam theory.When the internal flow density varies with time,the pipe is excited parametrically.The stability of the pipe is determined by Floquet theory.Some simple parametric and combination resonances are determined.For a higher mass ratio(mean flow mass/pipe structural mass),higher flow velocity,or smaller end axial tension,the pipe becomes unstable more easily due to wider parametric resonance regions.In the subcritical flow velocity regime,the vibrations of the pipe are periodic and quasiperiodic for simple and combination resonances,respectively.However,in the supercritical regime,the vibrations of the pipe exhibit much richer dynamics including periodic,multiperiodic,quasiperiodic,and chaotic behaviors. 展开更多
关键词 PIPE Varying flow density Parametric excitation STABILITY nonlinear vibrations
原文传递
Optimal Delayed Control of Nonlinear Vibration Resonances of Single Degree of Freedom System 被引量:4
7
作者 刘灿昌 季宏丽 +2 位作者 孙慧玉 裘进浩 刘露 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第1期49-55,共7页
The primary resonance of a single-degree-of-freedom(SDOF)system subjected to a harmonic excitation is mitigated by the method of optimal time-delay feedback control.The stable regions of the time delays and feedback g... The primary resonance of a single-degree-of-freedom(SDOF)system subjected to a harmonic excitation is mitigated by the method of optimal time-delay feedback control.The stable regions of the time delays and feedback gains are obtained from the stable conditions of eigenvalue equation.Attenuation ratio is applied for evaluating the performance of the vibration control by taking aproportion of peak amplitude of primary resonance for the suspension system with or without controllers.Taking the attenuation ratio as the objective function and the stable regions of the time delays and feedback gains as constrains,the optimal feedback gains are determined by using minimum optimal method.Finally,simulation examples are also presented. 展开更多
关键词 nonlinear vibration optimal control time delay primary resonance
在线阅读 下载PDF
Nonlinear Vibrations and Stability of an Axially Moving Plate Immersed in Fluid 被引量:4
8
作者 Hongying Li Tianyi Lang +1 位作者 Yongjun Liu Jian Li 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2019年第6期737-753,共17页
In this paper,the nonlinear forced vibrations and stability of an axially moving large deflection plate immersed in fluid are investigated.Based on von Karman's large deflec・tion plate theory and taking into consi... In this paper,the nonlinear forced vibrations and stability of an axially moving large deflection plate immersed in fluid are investigated.Based on von Karman's large deflec・tion plate theory and taking into consideration the influence of fluid-strueture interaction,axial moving and axial tension,nonlinear dynamic equations are obtained by applying D'Alembert's principle.These dynamic equations are further discretized into ordinary differential equations via the Galerkin method.The frequency-response curves of system are obtained and examined.Then numerical method is used to analyze the bifurcation behaviors of immersed plate.Results show that as the parameters vary,the system displays periodic,multi-periodic,quasi-periodic and even chaotic motion.Through the analysis on global dynamic characteristics of fluid-strueture interaction system,rich and varied nonlinear dynamic characteristics are obtained,and various ways that lead to chaotic motion of the system are further revealed. 展开更多
关键词 Axially moving plate Fluid-strueture interaction nonlinear vibrations BIFURCATIONS
原文传递
Vertical-horizontal coupling nonlinear vibration characteristics of rolling mill under mixed lubrication 被引量:3
9
作者 Dong-xiao Hou Liang Xu Pei-ming Shi 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第5期574-585,共12页
Considering the dynamic influence of the roll vibration on the lubricant film thickness in the rolling deformation area,nonlinear dynamic rolling forces related to film thickness in the vertical and horizontal directi... Considering the dynamic influence of the roll vibration on the lubricant film thickness in the rolling deformation area,nonlinear dynamic rolling forces related to film thickness in the vertical and horizontal directions were obtained based on the Karman balance theory.Based on these dynamic rolling forces and the mechanical vibration of the rolling mill,a vertical-horizontal coupling nonlinear vibration dynamic model was established.The amplitude-frequency equation of the main resonance was derived by using the multiple-scale method.At last,the parameters of the 1780 rolling mill were used for numerical simulation,and the time-domain response curves of the system’s vibration displacement and lubricating film thickness under the steady and unsteady conditions were analyzed.The influences of parameters such as interface contact ratio,nonlinear parameters and external disturbances on the primary resonance frequency characteristics were obtained,which provided a theoretical reference for the suppression of rolling mill vibration. 展开更多
关键词 Vertical-horizontal coupling nonlinear vibration Mixed lubrication Dynamic rolling force Main resonance Amplitude-frequency characteristic
原文传递
Nonlinear vibration and buckling of circular sandwich plate under complex load 被引量:3
10
作者 杜国君 马建青 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第8期1081-1091,共11页
The nonlinear vibration fundamental equation of circular sandwich plate under uniformed load and circumjacent load and the loosely clamped boundary condi- tion were established by von Karman plate theory, and then acc... The nonlinear vibration fundamental equation of circular sandwich plate under uniformed load and circumjacent load and the loosely clamped boundary condi- tion were established by von Karman plate theory, and then accordingly exact solution of static load and its numerical results were given. Based on time mode hypothesis and the variational method, the control equation of the space mode was derived, and then the amplitude frequency-load character relation of circular sandwich plate was obtained by the modified iteration method. Consequently the rule of the effect of the two kinds of load on the vibration character of the circular sandwich plate was investigated. When circumjacent load makes the lowest natural frequency zero, critical load is obtained. 展开更多
关键词 circular sandwich plate nonlinear vibration BUCKLING complex load amplitude frequency-load characteristic relation
在线阅读 下载PDF
Snap-through behaviors and nonlinear vibrations of a bistable composite laminated cantilever shell:an experimental and numerical study 被引量:2
11
作者 Lele REN Wei ZHANG +1 位作者 Ting DONG Yufei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期779-794,共16页
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.... The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell. 展开更多
关键词 bistable composite laminated cantilever shell snap-through behavior nonlinear vibration nonlinear stiffness characteristic chaos and bifurcation
在线阅读 下载PDF
HOMOTOPY PERTURBATION SOLUTION AND PERIODICITY ANALYSIS OF NONLINEAR VIBRATION OF THIN RECTANGULAR FUNCTIONALLY GRADED PLATES 被引量:2
12
作者 A.Allahverdizadeh R.Oftadeh +1 位作者 M.J.Mahjoob M.H.Naei 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2014年第2期210-220,共11页
In this paper nonlinear analysis of a thin rectangular functionally graded piate is formulated in terms of von-Karman's dynamic equations. Functionaily Graded Material (FGM) properties vary through the constant thi... In this paper nonlinear analysis of a thin rectangular functionally graded piate is formulated in terms of von-Karman's dynamic equations. Functionaily Graded Material (FGM) properties vary through the constant thickness of the plate at ambient temperature. By expansion of the solution as a series of mode functions, we reduce the governing equations of motion to a Duffing's equation. The homotopy perturbation solution of generated Duffing's equation is also obtained and compared with numerical solutions. The sufficient conditions for the existence of periodic oscillatory behavior of the plate are established by using Green's function and Schauder's fixed point theorem. 展开更多
关键词 nonlinear vibration FGM rectangular plate Schauder's fixed point theorem homotopy perturbation method
原文传递
Aeroelastic Properties and Nonlinear Vibration Control of a Simply-Supported Lattice Sandwich Beam Embedded with Nitinol-Steel Wire Ropes 被引量:2
13
作者 Yewei Zhang Xichao Chen +1 位作者 Donghui Li Jian Zang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第5期755-764,共10页
As a novel vibration absorber,Nitinol-steel wire rope(NiTi-ST)has rarely been studied on vibration suppression for lattice sandwich beams in supersonic airflow.In this paper,NiTi-ST with nonlinear stiffness and hyster... As a novel vibration absorber,Nitinol-steel wire rope(NiTi-ST)has rarely been studied on vibration suppression for lattice sandwich beams in supersonic airflow.In this paper,NiTi-ST with nonlinear stiffness and hysteretic damping is embedded in a lattice sandwich beam to control the beam's vibration.The nonlinear restoring and hysteretic damping force of NiTi-ST are treated as polynomials.The dynamic equation is established based on Hamilton's principle.The amplitude responses of the beam with different NiTi-ST configurations are calculated.The vibration-suppression effects and energy dissipation of lattice sandwich beam with different NiTi-ST configurations under different air velocities are also compared.The frequency-domain and time-domain methods are used to analyze the structural aeroelastic properties.Simulation results show that the use of NiTi-ST can significantly suppress excessive vibration of a lattice sandwich beam in supersonic airflow. 展开更多
关键词 Lattice sandwich beam nonlinear vibration control Nitinol-steel wire rope Supersonic airflow
原文传递
Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory 被引量:5
14
作者 M.Faraji Oskouie R.Ansari F.Sadeghi 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第4期416-424,共9页
The nonlinear vibrations of viscoelastic Euler-Bernoulli nanobeams are studied using the fractional calculus and the Gurtin-Murdoch theory. Employing Hamilton's principle, the governing equation considering surface e... The nonlinear vibrations of viscoelastic Euler-Bernoulli nanobeams are studied using the fractional calculus and the Gurtin-Murdoch theory. Employing Hamilton's principle, the governing equation considering surface effects is derived. The fractional integro-partial differential governing equation is first converted into a fractional-ordinary differential equation in the time domain using the Galerkin scheme. Thereafter, the set of nonlinear fractional time-dependent equations expressed in a state-space form is solved using the predictorcorrector method. Finally, the effects of initial displacement, fractional derivative order, viscoelasticity coefficient, surface parameters and thickness-to-length ratio on the nonlinear time response of simply-supported and clamped-free silicon viscoelastic nanobeams are investigated. 展开更多
关键词 Fractional calculus Viscoelastic nanobeam nonlinear vibrations
原文传递
OPTIMAL CONTROL OF NONLINEAR VIBRATION RESONANCES OF SINGLE-WALLED NANOTUBE BEAMS 被引量:1
15
作者 Canchang Liu Chuanbo Ren +1 位作者 Lu Liu Yingzi Xu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2014年第6期648-656,共9页
An optimal time-delay feedback control method is provided to mitigate the primary resonance of a single-walled carbon nanotube (SWCNT) subjected to a Lorentz force excited by a longitudinal magnetic field. The nonli... An optimal time-delay feedback control method is provided to mitigate the primary resonance of a single-walled carbon nanotube (SWCNT) subjected to a Lorentz force excited by a longitudinal magnetic field. The nonlinear governing equations of motion for the SWCNT under longitudinal magnetic field are derived and the modulation equations are obtained by using the method of multiple scales. The regions of the stable feedback gain are worked out by using the stability conditions of eigenvalue equation. Taking the attenuation ratio as the objective function and the stable vibration regions as constrained conditions, the optimal control parameters are worked out by using minimum optimal method. The optimal controllers are designed to control the dynamic behaviors of tile nonlinear vibration systems. It is found that the optimal feedback gain obtained by the optimal method can enhance the control performance of the primary resonance of SWCNT devices. 展开更多
关键词 NANOTUBE nonlinear vibration optimal control time delay primary resonance
原文传递
NONLINEAR VIBRATION FOR MODERATE THICKNESS RECTANGULAR CRACKED PLATES INCLUDING COUPLED EFFECT OF ELASTIC FOUNDATION 被引量:1
16
作者 XIAO Yong-gang(肖勇刚) FU Yi-ming(傅衣铭) ZHA Xu-dong(查旭东) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第8期963-972,共10页
Based on Reissner plate theory and Hamilton variational principle, the nonlinear equations of motion were derived for the moderate thickness rectangular plates with transverse surface penetrating crack on the two-para... Based on Reissner plate theory and Hamilton variational principle, the nonlinear equations of motion were derived for the moderate thickness rectangular plates with transverse surface penetrating crack on the two-parameter foundation. Under the condition of free boundary, a set of trial functions satisfying all boundary conditions and crack's continuous conditions were proposed. By employing the Galerkin method and the harmonic balance method, the nonlinear vibration equations were solved and the nonlinear vibration behaviors of the plate were analyzed. In numerical computation, the effects of the different location and depth of crack, the different structural parameters of plates and the different physical parameters of foundation on the nonlinear amplitude frequency response curves of the plate were discussed. 展开更多
关键词 moderate thickness rectangular plate elastic foundation CRACK nonlinear vibration
在线阅读 下载PDF
Nonlinear vibration of embedded single-walled carbon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory 被引量:1
17
作者 王博 邓子辰 张凯 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第3期269-280,共12页
Based on the nonlocal continuum theory, the nonlinear vibration of an embedded single-walled carbon nanotube (SWCNT) subjected to a harmonic load is in- vestigated. In the present study, the SWCNT is assumed to be a... Based on the nonlocal continuum theory, the nonlinear vibration of an embedded single-walled carbon nanotube (SWCNT) subjected to a harmonic load is in- vestigated. In the present study, the SWCNT is assumed to be a curved beam, which is unlike previous similar work. Firstly, the governing equations of motion are derived by the Hamilton principle, meanwhile, the Galerkin approach is carried out to convert the nonlinear integral-differential equation into a second-order nonlinear ordinary differ- ential equation. Then, the precise integration method based on the local linearzation is appropriately designed for solving the above dynamic equations. Besides, the numerical example is presented, the effects of the nonlocal parameters, the elastic medium constants, the waviness ratios, and the material lengths on the dynamic response are analyzed. The results show that the above mentioned effects have influences on the dynamic behavior of the SWCNT. 展开更多
关键词 embedded curved carbon nanotube nonlocal Timoshenko beam theory nonlinear vibration harmonic load precise integrator method
在线阅读 下载PDF
Nonlinear vibrations of a composite circular plate with a rigid body
18
作者 Ying MENG Xiaoye MAO +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期857-876,共20页
The influence of weights is usually ignored in the study of nonlinear vibrations of plates.In this paper,the effect of structure weights on the nonlinear vibration of a composite circular plate with a rigid body is pr... The influence of weights is usually ignored in the study of nonlinear vibrations of plates.In this paper,the effect of structure weights on the nonlinear vibration of a composite circular plate with a rigid body is presented.The nonlinear governing equations are derived from the generalized Hamilton's principle and the von Kármán plate theory.The equilibrium configurations due to weights are determined and validated by the finite element method(FEM).A nonlinear model for the vibration around the equilibrium configuration is established.Moreover,the natural frequencies and amplitude-frequency responses of harmonically forced vibrations are calculated.The study shows that the structure weights introduce additional linear and quadratic nonlinear terms into the dynamical model.This leads to interesting phenomena.For example,considering weights increases the natural frequency.Furthermore,when the influence of weights is considered,the vibration response of the plate becomes asymmetrical. 展开更多
关键词 composite circular plate WEIGHT nonlinear vibration equilibrium configuration natural frequency
在线阅读 下载PDF
NONLINEAR VIBRATION OF CIRCULAR SANDWICH PLATES UNDER CIRCUMJACENT LOAD
19
作者 杜国君 马建青 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第10期1417-1424,共8页
Based on von Karman plate theory, the issue about nonlinear vibration for circular sandwich plates under circumjacent load with the loosely clamped boundary condition was researched. Nonlinear differential eigenvalue ... Based on von Karman plate theory, the issue about nonlinear vibration for circular sandwich plates under circumjacent load with the loosely clamped boundary condition was researched. Nonlinear differential eigenvalue equations and boundary conditions of the problem were formulated by variational method and then their exact static solution can be got. The solution was derived by modified iteration method, so the analytic relations between amplitude and nonlinear oscillating frequency for circular sandwich plates were obtained. When circumjacent load makes the lowest natural frequency zero, critical load is obtained. 展开更多
关键词 sandwich plate nonlinear vibration critical load BUCKLING amplitude frequency-load characteristic relation
在线阅读 下载PDF
THERMOELASTICALLY COUPLED AXISYMMETRIC NONLINEAR VIBRATION OF SHALLOW SPHERICAL AND CONICAL SHELLS
20
作者 王永岗 戴诗亮 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第4期430-439,共10页
The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theor... The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of von Krmn and the theory of thermoelasticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin's technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors as well as boundary conditions on thermoelastically coupled nonlinear vibration behaviors are discussed. 展开更多
关键词 shallow spherical shell shallow conical shell thermoelastically coupled nonlinear vibration perturbation method
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部