Korean larch(Larix olgensis)is one of the main tree species for aff orestation and timber production in northeast China.However,its timber quality and growth ability are largely infl uenced by crown size,structure and...Korean larch(Larix olgensis)is one of the main tree species for aff orestation and timber production in northeast China.However,its timber quality and growth ability are largely infl uenced by crown size,structure and shape.The majority of crown models are static models based on tree size and stand characteristics from temporary sample plots,but crown dynamic models has seldom been constructed.Therefore,this study aimed to develop height to crown base(HCB)and crown length(CL)dynamic models using the branch mortality technique for a Korean larch plantation.The nonlinear mixed-eff ects model with random eff ects,variance functions and correlation structures,was used to build HCB and CL dynamic models.The data were obtained from 95 sample trees of 19 plots in Meng JiaGang forest farm in Northeast China.The results showed that HCB progressively increases as tree age,tree height growth(HT growth)and diameter at breast height growth(DBH growth).The CL was increased with tree age in 20 years ago,and subsequently stabilized.HT growth,DBH growth stand basal area(BAS)and crown competition factor(CCF)signifi cantly infl uenced HCB and CL.The HCB was positively correlated with BAS,HT growth and DBH growth,but negatively correlated with CCF.The CL was positively correlated with BAS and CCF,but negatively correlated with DBH growth.Model fi tting and validation confi rmed that the mixed-eff ects model considering the stand and tree level random eff ects was accurate and reliable for predicting the HCB and CL dynamics.However,the models involving adding variance functions and time series correlation structure could not completely remove heterogeneity and autocorrelation,and the fi tting precision of the models was reduced.Therefore,from the point of view of application,we should take care to avoid setting up over-complex models.The HCB and CL dynamic models in our study may also be incorporated into stand growth and yield model systems in China.展开更多
An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through the Parallel Distributed Compensation(PDC)approach and the Proportional-Difference(P-D)feedback framework.Based o...An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through the Parallel Distributed Compensation(PDC)approach and the Proportional-Difference(P-D)feedback framework.Based on the Takagi-Sugeno Fuzzy Descriptor Model(T-SFDM),a nonlinear discrete-time descriptor system is represented as several linear fuzzy subsystems,which facilitates the linear P-D feedback technique and streamlines the fuzzy controller design process.Leveraging the P-D feedback fuzzy controller,the closed-loop T-SFDM can be transformed into a standard system that guarantees non-impulsiveness and causality for the nonlinear discrete-time descriptor system.In view of the disturbance problems,a passive performance constraint is incorporated into the fuzzy tracking synthesis to achieve dissipativity of disturbance energy.To achieve a better balance between state and control responses,the H2 performance requirement is considered and a minimization constraint is applied to optimize the H2 index.It is observed that there is a lack of research focusing on both disturbance and control input issues in nonlinear descriptor systems.Extending the Lyapunov theory,a stability analysis method is proposed for the tracking purpose with the combination of the free-weighting matrix to relax the analysis process while complying multiple performance constraints.Finally,two simulation examples are presented to demonstrate the feasibility and applicability of the proposed approach in practical control scenarios for nonlinear descriptor systems.展开更多
Mixed-effects models,also called random-effects models,are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject,but also to describe the variation among ...Mixed-effects models,also called random-effects models,are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject,but also to describe the variation among different subjects.Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data.In this paper,nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies.By using this type of models,statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance.Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.展开更多
[Objective] The aim was to develop a nonlinear model of quantitative analysis of melamine content by infrared spectroscopy and provide theoretical basis for the nondestructive detection of melamine. [Method] According...[Objective] The aim was to develop a nonlinear model of quantitative analysis of melamine content by infrared spectroscopy and provide theoretical basis for the nondestructive detection of melamine. [Method] According to dynamics,mathematical modeling and optimization theory,linear and nonlinear models were respectively set up by taking an absorption peak of 1 550 cm-1 as characteristic absorption peak. [Result] The correlation coefficient of nonlinear model was 0.922 7 and the recovery was 96%,which showed that the nonlinear model was more accurate than linearity model with correlation coefficient of 0.904 9 and recovery of 557%. [Conclusion] It is feasible to determine melamine content by using the nonlinear model quantitatively.展开更多
A wavelet collocation method with nonlinear auto companding is proposed for behavioral modeling of switched current circuits.The companding function is automatically constructed according to the initial error distri...A wavelet collocation method with nonlinear auto companding is proposed for behavioral modeling of switched current circuits.The companding function is automatically constructed according to the initial error distribution obtained through approximating the input output function of the SI circuit by conventional wavelet collocation method.In practical applications,the proposed method is a general purpose approach,by which both the small signal effect and the large signal effect are modeled in a unified formulation to ease the process of modeling and simulation.Compared with the published modeling approaches,the proposed nonlinear auto companding method works more efficiently not only in controlling the error distribution but also in reducing the modeling errors.To demonstrate the promising features of the proposed method,several SI circuits are employed as examples to be modeled and simulated.展开更多
The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displa...The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit.展开更多
There exists a lot of research on the nonlinear vibration of the pipeline system with different boundary conditions.To the best of our knowledge,little research on the actual constraint of the clamp has been performed...There exists a lot of research on the nonlinear vibration of the pipeline system with different boundary conditions.To the best of our knowledge,little research on the actual constraint of the clamp has been performed.In this paper,according to hysteresis loops of the clamp obtained from experimental test,the simplified bilinear stiffness and damping model is proposed.Then the Finite Element(FE)model of L-type pipeline system with clamps is established using Timoshenko beam theory in combination with aforementioned stiffness-damping model.Both hammering and shaker tests verify the FE model via the comparisons of natural frequencies and vibration responses.The results show that the maximum errors of natural frequencies and vibration responses are about 8.31%and 17.6%,respectively.The proposed model can simulate the dynamic characteristics of the L-type pipeline system with clamps well,which is helpful to provide some guidance for the early design stage of pipeline in aero-engine.展开更多
An analysis of statistical expected values for transformations is performed in this study to quantify the effect of heterogeneity on spatial geological modeling and evaluations. Algebraic transformations are frequentl...An analysis of statistical expected values for transformations is performed in this study to quantify the effect of heterogeneity on spatial geological modeling and evaluations. Algebraic transformations are frequently applied to data from logging to allow for the modeling of geological properties. Transformations may be powers, products, and exponential operations which are commonly used in well-known relations (e.g., porosity-permeability transforms). The results of this study show that correct computations must account for residual transformation terms which arise due to lack of independence among heterogeneous geological properties. In the case of an exponential porosity-permeability transform, the values may be positive. This proves that a simple exponential model back-transformed from linear regression underestimates permeability. In the case of transformations involving two or more properties, residual terms may represent the contribution of heterogeneous components which occur when properties vary together, regardless of a pair-wise linear independence. A consequence of power- and product-transform models is that regression equations within those transformations need corrections via residual cumulants. A generalization of this result is that transformations of multivariate spatial attributes require multiple-point random variable relations. This analysis provides practical solutions leading to a methodology for nonlinear modeling using correct back transformations in geology.展开更多
Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based o...Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters struc^tres. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system monitoring and diagnosis.展开更多
Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighte...Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighted combination of some linear models at multiple local working points. On this basis, the fuzzy model of the multirate sampled nonlinear system is built. The premise structure of the fuzzy model is confirmed by using fuzzy competitive learning, and the conclusion parameters of the fuzzy model are estimated by the random gradient descent algorithm. The convergence of the proposed identification algorithm is given by using the martingale theorem and lemmas. The fuzzy model of the PH neutralization process of acid-base titration for hair quality detection is constructed to demonstrate the effectiveness of the proposed method.展开更多
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and...A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.展开更多
Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(W...Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems.展开更多
A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for...A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.展开更多
This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework base...This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.展开更多
In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis...In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.展开更多
How nonlinear joints affect the response of large space structures is an important problem to investigate.In this paper,a multi-harmonic equivalent modeling method is presented to establish a frequency-domain model of...How nonlinear joints affect the response of large space structures is an important problem to investigate.In this paper,a multi-harmonic equivalent modeling method is presented to establish a frequency-domain model of planar repetitive structures with nonlinear joints.First,at the local level,the nonlinear joint is modeled by the multi-harmonic describing function matrix.The element of the hybrid beam is obtained by the dynamic condensation of the beam-joint element.Second,at the global level,the displacement-equivalence method is used to model the multi-harmonic Euler continuum beam equivalent to the planar repetitive structure.Then,the pseudo-arc-length continuation method is applied to track the multi-harmonic trajectory of response.Afterwards,an experiment is conducted to validate the correctness of the modeling method,considering the effect of hanging rope and air damping.In the numerical studies,several simulation results indicate the similarity of response between a single-degree-of-freedom system with a single nonlinear joint and the system of the planar repetitive structure with a large number of nonlinear joints.Finally,the component of higher-order harmonics is shown to be important for predicting the resonance frequencies and amplitudes.展开更多
Compliant mobile robotics is a developing bioinspired concept of propulsion for locomotion.This paper studies the modeling and analysis of a compliant tail-propelled fish-like robot.This biomimetic design uses a fluid...Compliant mobile robotics is a developing bioinspired concept of propulsion for locomotion.This paper studies the modeling and analysis of a compliant tail-propelled fish-like robot.This biomimetic design uses a fluid-filled network of channels embedded into the soft body to actuate the compliant tail and generate thrust.This study analyzes the nonlinear dynamics of Fish Tail Fluidic Actuator(FTFA).The fluidic expansion under pressure creates a bending moment in the tail.It is demonstrated that the tail response follows the theoretical formulation extracted from the accurate modeling.In this modeling,tail is assumed as a continuous Euler–Bernoulli beam considering large deflection and nonlinear strain.Then,the implementation of Hamilton's principle and the method of calculation lead to the motion equations.The assumed mode method is used to achieve the mathematical model in the multi-mode system that is more similar to the soft continuous system.We investigate the tendencies of the tail amplitude,swimming speed,and Strouhal number when the input driving frequency changes.The simulation results disclose that high swimming efficiency can be obtained at the multi-order resonances;meanwhile,the compliant fish robot is pushed at the corresponding frequency illustrating nonlinear behavior.展开更多
To shed light on the subgrid-seale (SGS) modeling methodology of nonlinear systems such as the Navier-Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are show...To shed light on the subgrid-seale (SGS) modeling methodology of nonlinear systems such as the Navier-Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are shown by generalized derivation of three general mathematical constraints for different combinations of restrictions. These constraints are verified numerically in a one-dimensional nonlinear advection equation. This study is expected to inspire future research on the SGS modeling methodology of nonlinear systems.展开更多
A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouce Wen differential model. It not only reflects the hysteresis force characteristics of the Bo...A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouce Wen differential model. It not only reflects the hysteresis force characteristics of the Bouce Wen model, but also determines its corresponding parameters. The simulation results show that restoring forceedisplacement curve hysteresis loop is very close to the real curve. The model trained can accurately predict the time response of system. The model is checked under the noise level. The result shows that the model has higher modeling precision, good generalization capability and a certain anti-interference ability.展开更多
Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ...Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.展开更多
基金supported by the National Key Research and Development Program of China(2017YFD0600401)the Fundamental Research Funds for the Central Universities(2572019CP08)
文摘Korean larch(Larix olgensis)is one of the main tree species for aff orestation and timber production in northeast China.However,its timber quality and growth ability are largely infl uenced by crown size,structure and shape.The majority of crown models are static models based on tree size and stand characteristics from temporary sample plots,but crown dynamic models has seldom been constructed.Therefore,this study aimed to develop height to crown base(HCB)and crown length(CL)dynamic models using the branch mortality technique for a Korean larch plantation.The nonlinear mixed-eff ects model with random eff ects,variance functions and correlation structures,was used to build HCB and CL dynamic models.The data were obtained from 95 sample trees of 19 plots in Meng JiaGang forest farm in Northeast China.The results showed that HCB progressively increases as tree age,tree height growth(HT growth)and diameter at breast height growth(DBH growth).The CL was increased with tree age in 20 years ago,and subsequently stabilized.HT growth,DBH growth stand basal area(BAS)and crown competition factor(CCF)signifi cantly infl uenced HCB and CL.The HCB was positively correlated with BAS,HT growth and DBH growth,but negatively correlated with CCF.The CL was positively correlated with BAS and CCF,but negatively correlated with DBH growth.Model fi tting and validation confi rmed that the mixed-eff ects model considering the stand and tree level random eff ects was accurate and reliable for predicting the HCB and CL dynamics.However,the models involving adding variance functions and time series correlation structure could not completely remove heterogeneity and autocorrelation,and the fi tting precision of the models was reduced.Therefore,from the point of view of application,we should take care to avoid setting up over-complex models.The HCB and CL dynamic models in our study may also be incorporated into stand growth and yield model systems in China.
基金founded by the National Science and Technology Council(Taiwan)under contract NSTC113-2221-E-019-032.
文摘An optimal fuzzy tracking synthesis for nonlinear discrete-time descriptor systems is discussed through the Parallel Distributed Compensation(PDC)approach and the Proportional-Difference(P-D)feedback framework.Based on the Takagi-Sugeno Fuzzy Descriptor Model(T-SFDM),a nonlinear discrete-time descriptor system is represented as several linear fuzzy subsystems,which facilitates the linear P-D feedback technique and streamlines the fuzzy controller design process.Leveraging the P-D feedback fuzzy controller,the closed-loop T-SFDM can be transformed into a standard system that guarantees non-impulsiveness and causality for the nonlinear discrete-time descriptor system.In view of the disturbance problems,a passive performance constraint is incorporated into the fuzzy tracking synthesis to achieve dissipativity of disturbance energy.To achieve a better balance between state and control responses,the H2 performance requirement is considered and a minimization constraint is applied to optimize the H2 index.It is observed that there is a lack of research focusing on both disturbance and control input issues in nonlinear descriptor systems.Extending the Lyapunov theory,a stability analysis method is proposed for the tracking purpose with the combination of the free-weighting matrix to relax the analysis process while complying multiple performance constraints.Finally,two simulation examples are presented to demonstrate the feasibility and applicability of the proposed approach in practical control scenarios for nonlinear descriptor systems.
文摘Mixed-effects models,also called random-effects models,are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject,but also to describe the variation among different subjects.Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data.In this paper,nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies.By using this type of models,statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance.Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.
基金Supported by Promoting Projects of the Industrialization of University Research of Jiangsu Province (JHZD09-35)Natural Science Research Project of Universities in Jiangsu Province (09KJD210001)Research Foundation of Huaiyin Institute of Technology(HGA0908)~~
文摘[Objective] The aim was to develop a nonlinear model of quantitative analysis of melamine content by infrared spectroscopy and provide theoretical basis for the nondestructive detection of melamine. [Method] According to dynamics,mathematical modeling and optimization theory,linear and nonlinear models were respectively set up by taking an absorption peak of 1 550 cm-1 as characteristic absorption peak. [Result] The correlation coefficient of nonlinear model was 0.922 7 and the recovery was 96%,which showed that the nonlinear model was more accurate than linearity model with correlation coefficient of 0.904 9 and recovery of 557%. [Conclusion] It is feasible to determine melamine content by using the nonlinear model quantitatively.
文摘A wavelet collocation method with nonlinear auto companding is proposed for behavioral modeling of switched current circuits.The companding function is automatically constructed according to the initial error distribution obtained through approximating the input output function of the SI circuit by conventional wavelet collocation method.In practical applications,the proposed method is a general purpose approach,by which both the small signal effect and the large signal effect are modeled in a unified formulation to ease the process of modeling and simulation.Compared with the published modeling approaches,the proposed nonlinear auto companding method works more efficiently not only in controlling the error distribution but also in reducing the modeling errors.To demonstrate the promising features of the proposed method,several SI circuits are employed as examples to be modeled and simulated.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)Hebei Provincial Applied Basic Research Program(Grant No.12962147D)National Natural Science Foundation of China(Grant No.51375423)
文摘The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit.
基金supported by National Natural Science Foundation of China(No.11772089)Fundamental Research Funds for the Central Universities(Nos.N170308028,N170306004 and N180708009)Program for the Innovative Talents of Higher Learning Institutions of Liaoning(LR2017035)。
文摘There exists a lot of research on the nonlinear vibration of the pipeline system with different boundary conditions.To the best of our knowledge,little research on the actual constraint of the clamp has been performed.In this paper,according to hysteresis loops of the clamp obtained from experimental test,the simplified bilinear stiffness and damping model is proposed.Then the Finite Element(FE)model of L-type pipeline system with clamps is established using Timoshenko beam theory in combination with aforementioned stiffness-damping model.Both hammering and shaker tests verify the FE model via the comparisons of natural frequencies and vibration responses.The results show that the maximum errors of natural frequencies and vibration responses are about 8.31%and 17.6%,respectively.The proposed model can simulate the dynamic characteristics of the L-type pipeline system with clamps well,which is helpful to provide some guidance for the early design stage of pipeline in aero-engine.
文摘An analysis of statistical expected values for transformations is performed in this study to quantify the effect of heterogeneity on spatial geological modeling and evaluations. Algebraic transformations are frequently applied to data from logging to allow for the modeling of geological properties. Transformations may be powers, products, and exponential operations which are commonly used in well-known relations (e.g., porosity-permeability transforms). The results of this study show that correct computations must account for residual transformation terms which arise due to lack of independence among heterogeneous geological properties. In the case of an exponential porosity-permeability transform, the values may be positive. This proves that a simple exponential model back-transformed from linear regression underestimates permeability. In the case of transformations involving two or more properties, residual terms may represent the contribution of heterogeneous components which occur when properties vary together, regardless of a pair-wise linear independence. A consequence of power- and product-transform models is that regression equations within those transformations need corrections via residual cumulants. A generalization of this result is that transformations of multivariate spatial attributes require multiple-point random variable relations. This analysis provides practical solutions leading to a methodology for nonlinear modeling using correct back transformations in geology.
基金supported by National Natural Science Foundation of China(Grant No.51175511)
文摘Electro-hydraulic control systems are nonlinear in nature and their mathematic models have unknown parameters. Existing research of modeling and identification of the electro-hydraulic control system is mainly based on theoretical state space model, and the parameters identification is hard due to its demand on internal states measurement. Moreover, there are also some hard-to-model nonlinearities in theoretical model, which needs to be overcome. Modeling and identification of the electro-hydraulic control system of an excavator arm based on block-oriented nonlinear(BONL) models is investigated. The nonlinear state space model of the system is built first, and field tests are carried out to reveal the nonlinear characteristics of the system. Based on the physic insight into the system, three BONL models are adopted to describe the highly nonlinear system. The Hammerstein model is composed of a two-segment polynomial nonlinearity followed by a linear dynamic subsystem. The Hammerstein-Wiener(H-W) model is represented by the Hammerstein model in cascade with another single polynomial nonlinearity. A novel Pseudo-Hammerstein-Wiener(P-H-W) model is developed by replacing the single polynomial of the H-W model by a non-smooth backlash function. The key term separation principle is applied to simplify the BONL models into linear-in-parameters struc^tres. Then, a modified recursive least square algorithm(MRLSA) with iterative estimation of internal variables is developed to identify the all the parameters simultaneously. The identification results demonstrate that the BONL models with two-segment polynomial nonlinearities are able to capture the system behavior, and the P-H-W model has the best prediction accuracy. Comparison experiments show that the velocity prediction error of the P-H-W model is reduced by 14%, 30% and 75% to the H-W model, Hammerstein model, and extended auto-regressive (ARX) model, respectively. This research is helpful in controller design, system monitoring and diagnosis.
基金supported by the National Natural Science Foundation of China(61863034)。
文摘Based on the multi-model principle, the fuzzy identification for nonlinear systems with multirate sampled data is studied.Firstly, the nonlinear system with multirate sampled data can be shown as the nonlinear weighted combination of some linear models at multiple local working points. On this basis, the fuzzy model of the multirate sampled nonlinear system is built. The premise structure of the fuzzy model is confirmed by using fuzzy competitive learning, and the conclusion parameters of the fuzzy model are estimated by the random gradient descent algorithm. The convergence of the proposed identification algorithm is given by using the martingale theorem and lemmas. The fuzzy model of the PH neutralization process of acid-base titration for hair quality detection is constructed to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.42150204 and 2288101)supported by the China National Postdoctoral Program for Innovative Talents(BX20230045)the China Postdoctoral Science Foundation(2023M730279)。
文摘A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread.
基金Financial support from the National Key R&D Program of China(No.2017YFB0601805)。
文摘Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems.
基金Foundation item: The National Torch Program of China (No. 2001EB000991)
文摘A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.
文摘This paper provides an introduction to a support vector machine, a new kernel-based technique introduced in statistical learning theory and structural risk minimization, then presents a modeling-control framework based on SVM. At last a numerical experiment is taken to demonstrate the proposed approach's correctness and effectiveness.
文摘In order to enhance the control performance of piezo-positioning system,the influence of hysteresis characteristics and its compensation method are studied.Hammerstein model is used to represent the dynamic hysteresis nonlinear characteristics of piezo-positioning actuator.The static nonlinear part and dynamic linear part of the Hammerstein model are represented by models obtained through the Prandtl-Ishlinskii(PI)model and Hankel matrix system identification method,respectively.This model demonstrates good generalization capability for typical input frequencies below 200 Hz.A sliding mode inverse compensation tracking control strategy based on P-I inverse model and integral augmentation is proposed.Experimental results show that compared with PID inverse compensation control and sliding mode control without inverse compensation,the sliding mode inverse compensation control has a more ideal step response and no overshoot,moreover,the settling time is only 6.2 ms.In the frequency domain,the system closed-loop tracking bandwidth reaches 119.9 Hz,and the disturbance rejection bandwidth reaches 86.2 Hz.The proposed control strategy can effectively compensate the hysteresis nonlinearity,and improve the tracking accuracy and antidisturbance capability of piezo-positioning system.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11827801,12172181 and 11732006).
文摘How nonlinear joints affect the response of large space structures is an important problem to investigate.In this paper,a multi-harmonic equivalent modeling method is presented to establish a frequency-domain model of planar repetitive structures with nonlinear joints.First,at the local level,the nonlinear joint is modeled by the multi-harmonic describing function matrix.The element of the hybrid beam is obtained by the dynamic condensation of the beam-joint element.Second,at the global level,the displacement-equivalence method is used to model the multi-harmonic Euler continuum beam equivalent to the planar repetitive structure.Then,the pseudo-arc-length continuation method is applied to track the multi-harmonic trajectory of response.Afterwards,an experiment is conducted to validate the correctness of the modeling method,considering the effect of hanging rope and air damping.In the numerical studies,several simulation results indicate the similarity of response between a single-degree-of-freedom system with a single nonlinear joint and the system of the planar repetitive structure with a large number of nonlinear joints.Finally,the component of higher-order harmonics is shown to be important for predicting the resonance frequencies and amplitudes.
文摘Compliant mobile robotics is a developing bioinspired concept of propulsion for locomotion.This paper studies the modeling and analysis of a compliant tail-propelled fish-like robot.This biomimetic design uses a fluid-filled network of channels embedded into the soft body to actuate the compliant tail and generate thrust.This study analyzes the nonlinear dynamics of Fish Tail Fluidic Actuator(FTFA).The fluidic expansion under pressure creates a bending moment in the tail.It is demonstrated that the tail response follows the theoretical formulation extracted from the accurate modeling.In this modeling,tail is assumed as a continuous Euler–Bernoulli beam considering large deflection and nonlinear strain.Then,the implementation of Hamilton's principle and the method of calculation lead to the motion equations.The assumed mode method is used to achieve the mathematical model in the multi-mode system that is more similar to the soft continuous system.We investigate the tendencies of the tail amplitude,swimming speed,and Strouhal number when the input driving frequency changes.The simulation results disclose that high swimming efficiency can be obtained at the multi-order resonances;meanwhile,the compliant fish robot is pushed at the corresponding frequency illustrating nonlinear behavior.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11572025,11202013 and 51420105008
文摘To shed light on the subgrid-seale (SGS) modeling methodology of nonlinear systems such as the Navier-Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are shown by generalized derivation of three general mathematical constraints for different combinations of restrictions. These constraints are verified numerically in a one-dimensional nonlinear advection equation. This study is expected to inspire future research on the SGS modeling methodology of nonlinear systems.
文摘A feedforword neural network of multi-layer topologies for systems with hysteretic nonlinearity is constructed based on Bouce Wen differential model. It not only reflects the hysteresis force characteristics of the Bouce Wen model, but also determines its corresponding parameters. The simulation results show that restoring forceedisplacement curve hysteresis loop is very close to the real curve. The model trained can accurately predict the time response of system. The model is checked under the noise level. The result shows that the model has higher modeling precision, good generalization capability and a certain anti-interference ability.
基金Supported partially by the Post Doctoral Natural Science Foundation of China(2013M532118,2015T81082)the National Natural Science Foundation of China(61573364,61273177,61503066)+2 种基金the State Key Laboratory of Synthetical Automation for Process Industriesthe National High Technology Research and Development Program of China(2015AA043802)the Scientific Research Fund of Liaoning Provincial Education Department(L2013272)
文摘Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.