This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several mo...This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several modifications are presented.Numerical examples show the modified algorithms always work and can greatly reduce the computational costs.展开更多
This paper considers the estimation of an unknown function h that can be characterized as a solution to a nonlinear operator equation mapping between two infinite dimensional Hilbert spaces. The nonlinear operator is ...This paper considers the estimation of an unknown function h that can be characterized as a solution to a nonlinear operator equation mapping between two infinite dimensional Hilbert spaces. The nonlinear operator is unknown but can be consistently estimated, and its inverse is discontinuous, rendering the problem ill-posed. We establish the consistency for the class of estimators that are regularized using general lower semicompact penalty functions. We derive the optimal convergence rates of the estimators under the Hilbert scale norms. We apply our results to two important problems in economics and finance: (1) estimating the parameters of the pricing kernel of defaultable bonds; (2) recovering the volatility surface implied by option prices allowing for measurement error in the option prices and numerical error in the computation of the operator.展开更多
A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-spa...A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-space and a slip on that fault have to be reconstructed from noisy surface displacement measurements.With the parameter giving the plane containing the fault denoted by m and the regularization parameter for the linear part of the inverse problem denoted by C,both modeled as random variables,we derive a formula for the posterior marginal of m.Modeling C as a random variable allows to sweep through a wide range of possible values which was shown to be superior to selecting a fixed value[11].We prove that this posterior marginal of m is convergent as the number of measurement points and the dimension of the space for discretizing slips increase.Simply put,our proof only assumes that the regularized discrete error functional for processing measurements relates to an order 1 quadrature rule and that the union of the finite-dimensional spaces for discretizing slips is dense.Our proof relies on trace class operator theory to show that an adequate sequence of determinants is uniformly bounded.We also explain how our proof can be extended to a whole class of inverse problems,as long as some basic requirements are met.Finally,we show numerical simulations that illustrate the numerical convergence of our algorithm.展开更多
基金Project supported by the Key Disciplines of Shanghai Municipality (Grant No.S30104)the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘This paper studies to numerical solutions of an inverse heat conduction problem.The effect of algorithms based on the Newton-Tikhonov method and the Newton-implicit iterative method is investigated,and then several modifications are presented.Numerical examples show the modified algorithms always work and can greatly reduce the computational costs.
基金supported by US National Science Foundation (Grant No. SES-0631613)the Cowles Foundation for Research in Economics
文摘This paper considers the estimation of an unknown function h that can be characterized as a solution to a nonlinear operator equation mapping between two infinite dimensional Hilbert spaces. The nonlinear operator is unknown but can be consistently estimated, and its inverse is discontinuous, rendering the problem ill-posed. We establish the consistency for the class of estimators that are regularized using general lower semicompact penalty functions. We derive the optimal convergence rates of the estimators under the Hilbert scale norms. We apply our results to two important problems in economics and finance: (1) estimating the parameters of the pricing kernel of defaultable bonds; (2) recovering the volatility surface implied by option prices allowing for measurement error in the option prices and numerical error in the computation of the operator.
基金This work was supported by Simons Foundation Collaboration Grant[351025]。
文摘A general stochastic algorithm for solving mixed linear and nonlinear problems was introduced in[11].We show in this paper how it can be used to solve the fault inverse problem,where a planar fault in elastic half-space and a slip on that fault have to be reconstructed from noisy surface displacement measurements.With the parameter giving the plane containing the fault denoted by m and the regularization parameter for the linear part of the inverse problem denoted by C,both modeled as random variables,we derive a formula for the posterior marginal of m.Modeling C as a random variable allows to sweep through a wide range of possible values which was shown to be superior to selecting a fixed value[11].We prove that this posterior marginal of m is convergent as the number of measurement points and the dimension of the space for discretizing slips increase.Simply put,our proof only assumes that the regularized discrete error functional for processing measurements relates to an order 1 quadrature rule and that the union of the finite-dimensional spaces for discretizing slips is dense.Our proof relies on trace class operator theory to show that an adequate sequence of determinants is uniformly bounded.We also explain how our proof can be extended to a whole class of inverse problems,as long as some basic requirements are met.Finally,we show numerical simulations that illustrate the numerical convergence of our algorithm.