This paper proposes two nonlinear blind equalizers: the nonlinear constant modulus algorithm (NCMA) and the nonlinear modified constant modulus algorithm (NCMA) by applying a nonlinear transfer function (NTF) into con...This paper proposes two nonlinear blind equalizers: the nonlinear constant modulus algorithm (NCMA) and the nonlinear modified constant modulus algorithm (NCMA) by applying a nonlinear transfer function (NTF) into constant modulus algorithm (CMA) and modified constant modulus algorithm (MCMA), respectively. The effect of the NTF on CMA and MCMA is theoretically analyzed, which implies that the NTF can make their decision regions much sharper so that the proposed two nonlinear blind equalizers are more robust against the convergency error compared to their linear counterparts. The embedded single layer in NCMA and NMCMA simultaneously guarantees a comparably speedy convergency. On 16-quadrature amplitude modulation (QAM) symbols, computer simulations show that NCMA achieves an 8dB lower convergency mean square error (MSE) than CMA, and NMCMA achieves a 15dB lower convergency MSE than MCMA.展开更多
文摘This paper proposes two nonlinear blind equalizers: the nonlinear constant modulus algorithm (NCMA) and the nonlinear modified constant modulus algorithm (NCMA) by applying a nonlinear transfer function (NTF) into constant modulus algorithm (CMA) and modified constant modulus algorithm (MCMA), respectively. The effect of the NTF on CMA and MCMA is theoretically analyzed, which implies that the NTF can make their decision regions much sharper so that the proposed two nonlinear blind equalizers are more robust against the convergency error compared to their linear counterparts. The embedded single layer in NCMA and NMCMA simultaneously guarantees a comparably speedy convergency. On 16-quadrature amplitude modulation (QAM) symbols, computer simulations show that NCMA achieves an 8dB lower convergency mean square error (MSE) than CMA, and NMCMA achieves a 15dB lower convergency MSE than MCMA.
文摘2017年5月7日,在弱天气尺度强迫下,广州发生了暖区特大暴雨,局地发展迅速,降水强度极端,多家业务模式出现了漏报情况。为了探究此次降水过程模式预报的不确定性,采用条件非线性最优参数扰动(Conditional Nonlinear Optimal Perturbation related to Parameters,CNOP-P)方法筛选出最能体现中小尺度系统非线性误差增长特征的关键物理参数,以此构造CNOP-P-RP模式扰动方案,并基于CMA-Meso模式进行对流尺度集合预报试验,最后探究了CNOP-P关键参数影响局地对流发生、发展不同阶段的物理机理。结果显示,不同降水阶段的CNOP-P敏感参数主要与垂直扩散、云雨自动转换或其他水成物向雨滴的转换有关。与业务上常用的随机物理倾向扰动(Stochastically Perturbed Parameterization Tendencies,SPPT)方案相比,在本次降水过程中,基于CNOP-P-RP方案构造的集合预报试验具有更高的降水和地面要素的概率预报技巧,集合预报系统可靠性也占优。进一步分析发现,垂直扩散不确定性导致的山前温度梯度和地面冷池的变化在对流触发和暴雨发展中起重要作用。7日00—04时(北京时,下同),花都强降水中心附近垂直扩散的增强使热量、动量和水汽的垂直输送加强,由此造成的雪、霰粒子融化增多是降水量增大的主要原因,说明该阶段雨滴的形成虽以云水的凝结碰并为主,但冰相粒子的作用不容忽视;7日04—08时,随着水汽输送和上升运动增强,更活跃的暖雨过程主导了增城强降水中心降水量的增大。该研究初步证明CNOP-P-RP方案在刻画对流尺度模式不确定性方面的可行性,可为华南暖区暴雨预报的改进提供一定参考。