期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
On Common Fixed Point of Noncompatible Mapping Pairs 被引量:2
1
作者 朱元泽 吕中学 《Journal of China University of Mining and Technology》 2002年第1期111-114,共4页
In this paper, two common fixed point theorems for noncompatible maps in a metric space have been proved under the condition of without taking completeness of the space or continuity of the mapings into account. The r... In this paper, two common fixed point theorems for noncompatible maps in a metric space have been proved under the condition of without taking completeness of the space or continuity of the mapings into account. The related common point theorems were improved. 展开更多
关键词 metric space noncompatible maps common fixed point.
在线阅读 下载PDF
Highly accurate symplectic element based on two variational principles 被引量:19
2
作者 Guanghui Qing Jia Tian 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第1期151-161,共11页
For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process... For the stability requirement of numerical resultants, the mathematical theory of classical mixed methods are relatively complex. However, generalized mixed methods are automatically stable, and their building process is simple and straightforward. In this paper, based on the seminal idea of the generalized mixed methods, a simple, stable, and highly accurate 8-node noncompatible symplectic element(NCSE8) was developed by the combination of the modified Hellinger-Reissner mixed variational principle and the minimum energy principle. To ensure the accuracy of in-plane stress results, a simultaneous equation approach was also suggested. Numerical experimentation shows that the accuracy of stress results of NCSE8 are nearly the same as that of displacement methods, and they are in good agreement with the exact solutions when the mesh is relatively fine. NCSE8 has advantages of the clearing concept, easy calculation by a finite element computer program, higher accuracy and wide applicability for various linear elasticity compressible and nearly incompressible material problems. It is possible that NCSE8 becomes even more advantageous for the fracture problems due to its better accuracy of stresses. 展开更多
关键词 Modified H-R mixed variational principle Partial-mixed element noncompatible symplectic element Finite element method Nearly incompressible material
在线阅读 下载PDF
Generalized mixed finite element method for 3D elasticity problems 被引量:16
3
作者 Guanghui Qing Junhui Mao Yanhong Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期371-380,共10页
Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R... Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions. 展开更多
关键词 Minimum potential energy principle Hellinger–Reissner (H–R) variational principle Generalized variational principle Generalized mixed element (GME) Elasticity problem noncompatible mode
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部