期刊文献+
共找到425篇文章
< 1 2 22 >
每页显示 20 50 100
Low-amplitude structure recognition method based on non-subsampled contourlet transform
1
作者 Fen Lyu Xing-Ye Liu +3 位作者 Li Chen Chao Li Jie Zhou Huai-Lai Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3062-3078,共17页
Currently, horizontal well fracturing is indispensable for shale gas development. Due to the variable reservoir formation morphology, the drilling trajectory often deviates from the high-quality reservoir,which increa... Currently, horizontal well fracturing is indispensable for shale gas development. Due to the variable reservoir formation morphology, the drilling trajectory often deviates from the high-quality reservoir,which increases the risk of fracturing. Accurately recognizing low-amplitude structures plays a crucial role in guiding horizontal wells. However, existing methods have low recognition accuracy, and are difficult to meet actual production demand. In order to improve the drilling encounter rate of high-quality reservoirs, we propose a method for fine recognition of low-amplitude structures based on the non-subsampled contourlet transform(NSCT). Firstly, the seismic structural data are analyzed at multiple scales and directions using the NSCT and decomposed into low-frequency and high-frequency structural components. Then, the signal of each component is reconstructed to eliminate the low-frequency background of the structure, highlight the structure and texture information, and recognize the low-amplitude structure from it. Finally, we combined the drilled horizontal wells to verify the low-amplitude structural recognition results. Taking a study area in the west Sichuan Basin block as an example, we demonstrate the fine identification of low-amplitude structures based on NSCT. By combining the variation characteristics of logging curves, such as organic carbon content(TOC), natural gamma value(GR), etc., the real structure type is verified and determined, and the false structures in the recognition results are checked. The proposed method can provide reliable information on low-amplitude structures for optimizing the trajectory of horizontal wells. Compared with identification methods based on traditional wavelet transform and curvelet transform, NSCT enhances the local features of low-amplitude structures and achieves finer mapping of low-amplitude structures, showing promise for application. 展开更多
关键词 Shale gas Low-amplitude structure Low-frequency background non-subsampled contourlet transform Horizontal well verification
原文传递
Robust Watermarking Algorithm for Medical Images Based on Non-Subsampled Shearlet Transform and Schur Decomposition
2
作者 Meng Yang Jingbing Li +2 位作者 Uzair Aslam Bhatti Chunyan Shao Yen-Wei Chen 《Computers, Materials & Continua》 SCIE EI 2023年第6期5539-5554,共16页
With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues co... With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues come along with it.Zero watermarking can solve this problem well.To protect the security of medical information and improve the algorithm’s robustness,this paper proposes a robust watermarking algorithm for medical images based on Non-Subsampled Shearlet Transform(NSST)and Schur decomposition.Firstly,the low-frequency subband image of the original medical image is obtained by NSST and chunked.Secondly,the Schur decomposition of low-frequency blocks to get stable values,extracting the maximum absolute value of the diagonal elements of the upper triangle matrix after the Schur decom-position of each low-frequency block and constructing the transition matrix from it.Then,the mean of the matrix is compared to each element’s value,creating a feature matrix by combining perceptual hashing,and selecting 32 bits as the feature sequence.Finally,the feature vector is exclusive OR(XOR)operated with the encrypted watermark information to get the zero watermark and complete registration with a third-party copyright certification center.Experimental data show that the Normalized Correlation(NC)values of watermarks extracted in random carrier medical images are above 0.5,with higher robustness than traditional algorithms,especially against geometric attacks and achieve watermark information invisibility without altering the carrier medical image. 展开更多
关键词 non-subsampled shearlet transform(NSST) Schur decomposition perceptual hashing chaotic mapping zero watermark
在线阅读 下载PDF
基于Shearlet变换的三维地震数据重建
3
作者 黄伟鸿 张华 +4 位作者 武召祺 戴梦雪 鲍兴悦 蒋伟龙 邱修权 《物探与化探》 2025年第2期394-403,共10页
在地震勘探中,受采集成本或地形环境的限制,地震数据往往存在缺失,因此数据重建是地震数据预处理的关键步骤。本文基于压缩感知理论框架,对合成数据进行二维随机欠采样,将三维地震数据划分为一系列时间切片,随后引入Shearlet稀疏变换,... 在地震勘探中,受采集成本或地形环境的限制,地震数据往往存在缺失,因此数据重建是地震数据预处理的关键步骤。本文基于压缩感知理论框架,对合成数据进行二维随机欠采样,将三维地震数据划分为一系列时间切片,随后引入Shearlet稀疏变换,结合凸集投影(POCS)算法逐次对每个时间切片进行数据重建,从而实现了基于Shearlet变换的三维地震数据时间域重建方法。数值试验和实测数据结果表明,相对于Curvelet变换的重建方法,本文所提出的重建方法的信噪比更高,计算速度更快,效果更好。 展开更多
关键词 shearlet变换 地震数据重建 压缩感知 凸集投影算法
在线阅读 下载PDF
Digital watermarking algorithm based on scale-invariant feature regions in non-subsampled contourlet transform domain 被引量:8
4
作者 Jian Zhao Na Zhang +1 位作者 Jian Jia Huanwei Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1310-1315,共6页
Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy... Contraposing the need of the robust digital watermark for the copyright protection field, a new digital watermarking algorithm in the non-subsampled contourlet transform (NSCT) domain is proposed. The largest energy sub-band after NSCT is selected to embed watermark. The watermark is embedded into scaleinvariant feature transform (SIFT) regions. During embedding, the initial region is divided into some cirque sub-regions with the same area, and each watermark bit is embedded into one sub-region. Extensive simulation results and comparisons show that the algorithm gets a good trade-off of invisibility, robustness and capacity, thus obtaining good quality of the image while being able to effectively resist common image processing, and geometric and combo attacks, and normalized similarity is almost all reached. 展开更多
关键词 multi-scale geometric analysis (MGA) non-subsampled contourlet transform (NSCT) scale-invariant featureregion.
在线阅读 下载PDF
联合VMD和Shearlet变换的去噪方法研究 被引量:2
5
作者 聂荣 许辉群 赵桠松 《工程地球物理学报》 2024年第1期176-186,共11页
地震数据中的噪声信号会很大程度上降低地震数据的信噪比,对后续的处理和解释工作造成一定的难度,因此研究一种去噪方法具有十分重要的意义。本文构建一种变分模态分解(Variational Mode Decomposition,VMD)和Shearlet变换联合去噪的方... 地震数据中的噪声信号会很大程度上降低地震数据的信噪比,对后续的处理和解释工作造成一定的难度,因此研究一种去噪方法具有十分重要的意义。本文构建一种变分模态分解(Variational Mode Decomposition,VMD)和Shearlet变换联合去噪的方法,首先通过VMD将地震数据分解为一系列不同中心频率分布的模态分量(Intrinsic Mode Function,IMF),然后使用Shearlet变换对含噪的IMF分量进行去噪并对处理后的分量进行重构,最终达到去噪目的。该方法引入基于稀疏表示的地震数据去噪方法,兼顾VMD和Shearlet变换的优点,可以有效去除噪声。经过合成信号、模型及实际数据测试结果表明,本文方法处理合成信号结果显示,与VMD和小波变换方法相比,信噪比分别提高1.69、1.87,均方误差数值上减少近一半,在去除噪声的同时能更好地保留地震数据特征,提高地震资料的信噪比。 展开更多
关键词 地震信号去噪 变分模态分解 shearlet变换 地震勘探
在线阅读 下载PDF
Multimodal Medical Image Fusion in Non-Subsampled Contourlet Transform Domain 被引量:3
6
作者 Periyavattam Shanmugam Gomathi Bhuvanesh Kalaavathi 《Circuits and Systems》 2016年第8期1598-1610,共13页
Multimodal medical image fusion is a powerful tool for diagnosing diseases in medical field. The main objective is to capture the relevant information from input images into a single output image, which plays an impor... Multimodal medical image fusion is a powerful tool for diagnosing diseases in medical field. The main objective is to capture the relevant information from input images into a single output image, which plays an important role in clinical applications. In this paper, an image fusion technique for the fusion of multimodal medical images is proposed based on Non-Subsampled Contourlet Transform. The proposed technique uses the Non-Subsampled Contourlet Transform (NSCT) to decompose the images into lowpass and highpass subbands. The lowpass and highpass subbands are fused by using mean based and variance based fusion rules. The reconstructed image is obtained by taking Inverse Non-Subsampled Contourlet Transform (INSCT) on fused subbands. The experimental results on six pairs of medical images are compared in terms of entropy, mean, standard deviation, Q<sup>AB/F</sup> as performance parameters. It reveals that the proposed image fusion technique outperforms the existing image fusion techniques in terms of quantitative and qualitative outcomes of the images. The percentage improvement in entropy is 0% - 40%, mean is 3% - 42%, standard deviation is 1% - 42%, Q<sup>AB/F</sup>is 0.4% - 48% in proposed method comparing to conventional methods for six pairs of medical images. 展开更多
关键词 Image Fusion non-subsampled Contourlet transform (NSCT) Medical Imaging Fusion Rules
在线阅读 下载PDF
Deformable Registration Algorithm via Non-subsampled Contourlet Transform and Saliency Map
7
作者 Chang Qing Yang Wenyou Chen Lanlan 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第4期452-462,共11页
Medical image registration is widely used in image-guided therapy and image-guided surgery to estimate spatial correspondence between planning and treatment images.However,most methods based on intensity have the prob... Medical image registration is widely used in image-guided therapy and image-guided surgery to estimate spatial correspondence between planning and treatment images.However,most methods based on intensity have the problems of matching ambiguity and ignoring the influence of weak correspondence areas on the overall registration.In this study,we propose a novel general-purpose registration algorithm based on free-form deformation by non-subsampled contourlet transform and saliency map,which can reduce the matching ambiguities and maintain the topological structure of weak correspondence areas.An optimization method based on Markov random fields is used to optimize the registration process.Experiments on four public datasets from brain,cardiac,and lung have demonstrated the general applicability and the accuracy of our algorithm compared with two state-of-the-art methods. 展开更多
关键词 medical image registration non-subsampled contourlet transform saliency map Markov random fields
原文传递
Shear Let Transform Residual Learning Approach for Single-Image Super-Resolution
8
作者 Israa Ismail Ghada Eltaweel Mohamed Meselhy Eltoukhy 《Computers, Materials & Continua》 SCIE EI 2024年第5期3193-3209,共17页
Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs.Super-resolution is of paramount importance in the context of remote... Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs.Super-resolution is of paramount importance in the context of remote sensing,satellite,aerial,security and surveillance imaging.Super-resolution remote sensing imagery is essential for surveillance and security purposes,enabling authorities to monitor remote or sensitive areas with greater clarity.This study introduces a single-image super-resolution approach for remote sensing images,utilizing deep shearlet residual learning in the shearlet transform domain,and incorporating the Enhanced Deep Super-Resolution network(EDSR).Unlike conventional approaches that estimate residuals between high and low-resolution images,the proposed approach calculates the shearlet coefficients for the desired high-resolution image using the provided low-resolution image instead of estimating a residual image between the high-and low-resolution image.The shearlet transform is chosen for its excellent sparse approximation capabilities.Initially,remote sensing images are transformed into the shearlet domain,which divides the input image into low and high frequencies.The shearlet coefficients are fed into the EDSR network.The high-resolution image is subsequently reconstructed using the inverse shearlet transform.The incorporation of the EDSR network enhances training stability,leading to improved generated images.The experimental results from the Deep Shearlet Residual Learning approach demonstrate its superior performance in remote sensing image recovery,effectively restoring both global topology and local edge detail information,thereby enhancing image quality.Compared to other networks,our proposed approach outperforms the state-of-the-art in terms of image quality,achieving an average peak signal-to-noise ratio of 35 and a structural similarity index measure of approximately 0.9. 展开更多
关键词 SUPER-RESOLUTION shearlet transform shearlet coefficients enhanced deep super-resolution network
在线阅读 下载PDF
基于剪切波变换的偶极远探测声波测井数据去噪方法 被引量:1
9
作者 岳文正 李羽飞 +1 位作者 刘鑫 张恒 《地球物理学报》 北大核心 2025年第5期1984-2002,共19页
偶极远探测声波测井是在阵列声波测井的基础上发展起来的成像探测方法,其中如何有效从全波列中分离出反射波是该方法的重点.由于井下的高温、高压环境影响,反射波信号经常受到随机噪声的干扰,因此通常利用带通滤波进行噪声压制,但分离... 偶极远探测声波测井是在阵列声波测井的基础上发展起来的成像探测方法,其中如何有效从全波列中分离出反射波是该方法的重点.由于井下的高温、高压环境影响,反射波信号经常受到随机噪声的干扰,因此通常利用带通滤波进行噪声压制,但分离出的反射波信噪比较低.针对传统带通滤波方法的不足,本文结合剪切波变换的稀疏表示最优和方向敏感性等优点,基于该算法提出了能同时对偶极声波测井数据进行波场分离和随机噪声压制的新方法.新方法利用剪切波变换进行波场分离,基于不同信号在剪切波域内的幅度不同,采用标准差自适应确定每一分解尺度的阈值,实现直达波和噪声的同步滤除.通过对模拟和实际测井数据的处理,展示了偶极全波场的反射波提取效果,并对比基于该方法的阈值去噪算法与带通滤波方法在理论和实际数据中的随机噪声压制效果.波场分离和最终成像结果表明:剪切波变换能够有效地分离出反射波,并且在信噪比较低时,基于该方法的阈值去噪算法具有更强的随机噪声压制能力,有效提升了反射波的信噪比. 展开更多
关键词 偶极远探测 反射波提取 随机噪声压制 剪切波变换 阈值去噪
在线阅读 下载PDF
基于变换域多尺度加权神经网络的全色锐化
10
作者 马飞 孙陆鹏 +1 位作者 杨飞霞 徐光宪 《自然资源遥感》 北大核心 2025年第3期76-84,共9页
为了解决全色锐化过程中存在的空间与光谱信息融合问题,该文提出了一种在非下采样剪切波变换(non-subsampled shearlet transform,NSST)域下,基于多尺度加权的脉冲耦合神经网络(pulse-coupled neural network,PCNN)和低秩稀疏分解的全... 为了解决全色锐化过程中存在的空间与光谱信息融合问题,该文提出了一种在非下采样剪切波变换(non-subsampled shearlet transform,NSST)域下,基于多尺度加权的脉冲耦合神经网络(pulse-coupled neural network,PCNN)和低秩稀疏分解的全色图像和多光谱图像的锐化模型。该模型分为低频和高频处理模块,对于高频子带,提出了一种适用于不同尺度不同方向高频子带的加权方式,并针对其不同方向上的特性,采用一种自适应PCNN模型;对于低频子带,首先将其分解为低秩与稀疏2部分,并根据低秩部分与稀疏部分特点设计相应的融合规则,再采取逆NSST变换得到融合图像。实验在GeoEye,QuickBird与Pléiades数据集上进行,并针对高频信息多尺度加权模块设计了消融实验,相比于次优模型,峰值信噪比(peak signal-to-noise ratio,PSNR)值分别提高了约1 dB,1.6 dB和2.2 dB。实验结果表明,该模型在指标评估中优于其他算法,并有效解决高频信息提取困难问题。 展开更多
关键词 全色锐化 非下采样剪切波变换 多尺度加权 脉冲耦合神经网络 低秩稀疏分解
在线阅读 下载PDF
浮选泡沫低照度图像颜色深度编解码校正及多尺度增强
11
作者 孙磊 唐倩 +3 位作者 廖一鹏 廖玉华 董则希 何建军 《光学精密工程》 北大核心 2025年第10期1609-1626,共18页
浮选现场环境恶劣、光照条件复杂多变,针对现场采集的浮选图像易出现曝光不足、颜色失真等问题,提出了一种低照度图像颜色深度编解码校正及多尺度增强方法。首先,将低照度图像从RGB转换至HSV空间,针对明度(V)分量,采用非下采样剪切波变... 浮选现场环境恶劣、光照条件复杂多变,针对现场采集的浮选图像易出现曝光不足、颜色失真等问题,提出了一种低照度图像颜色深度编解码校正及多尺度增强方法。首先,将低照度图像从RGB转换至HSV空间,针对明度(V)分量,采用非下采样剪切波变换(NSST)进行多尺度分解;其次,提出基于全局空间模块的色彩编解码网络,通过挤压提取、色彩编码、色彩解码、颜色校正构建颜色深度编解码校正网络模型,对色度(H)、饱和度(S)分量进行颜色校正;然后,采用自适应模糊集增强V分量的低频子带图像,利用尺度相关系数有效滤除V分量中各高频子带的噪声成分,同时使用非线性增益函数对高频边缘系数进行显著增强处理;最后,对增强后的V分量各子带图像作NSST反变换重构,并将重构后的V分量与校正后的H分量、S分量融合转换回RGB空间。通过实验验证,与当前的主流方法相比,本文方法CIEDE平均降低14.8358,PSNR平均提高8.48 dB,结构相似度平均提高31.32%,连续边缘像素比保持在91%以上。本文方法显著改善了图像的亮度,提升了对比度、清晰度和信息熵,使图像颜色更接近真实色彩,保留了更多纹理细节,并在有效抑制噪声的同时,实现了边缘增强。 展开更多
关键词 浮选泡沫 低照度图像 颜色校正 颜色深度编解码网络 多尺度增强与去噪 非下采样剪切波变换 模糊集
在线阅读 下载PDF
基于Shearlet变换的地震随机噪声压制 被引量:24
12
作者 刘成明 王德利 +3 位作者 王通 冯飞 程浩 孟阁阁 《石油学报》 EI CAS CSCD 北大核心 2014年第4期692-699,共8页
地震勘探中的噪声对地震信号产生严重的畸变和干扰,常规的地震去噪方法已经不能满足当前高精度地震勘探的要求。提出了基于Shearlet变换的地震数据去噪方法,Shearlet变换是一种新的多尺度变换方法,具有多方向、多分辨率及最佳稀疏逼近性... 地震勘探中的噪声对地震信号产生严重的畸变和干扰,常规的地震去噪方法已经不能满足当前高精度地震勘探的要求。提出了基于Shearlet变换的地震数据去噪方法,Shearlet变换是一种新的多尺度变换方法,具有多方向、多分辨率及最佳稀疏逼近性质,并且计算效率高。Shearlet变换在去除随机噪声的同时能最大程度保留有效信号,有效地提高信噪比。利用Shearlet变换阈值去噪法与其他地震去噪方法分别对不同信噪比的合成地震记录和实际地震记录进行对比,结果表明Shearlet变换具有更强的去噪能力和更高的运算效率。 展开更多
关键词 shearlet变换 去噪 信噪比 多尺度 随机噪声 稀疏变换
在线阅读 下载PDF
基于Shearlet变换的自适应图像融合算法 被引量:39
13
作者 石智 张卓 岳彦刚 《光子学报》 EI CAS CSCD 北大核心 2013年第1期115-120,共6页
针对多聚焦图像与多光谱和全色图像的成像特点,结合Shearlet变换具有较好的稀疏表示图像特征的性质,提出了一种新的图像融合规则.并基于此融合规则,提出了基于Shearlet变换的自适应图像融合算法.在多聚焦图像的融合算法中,分别对聚焦不... 针对多聚焦图像与多光谱和全色图像的成像特点,结合Shearlet变换具有较好的稀疏表示图像特征的性质,提出了一种新的图像融合规则.并基于此融合规则,提出了基于Shearlet变换的自适应图像融合算法.在多聚焦图像的融合算法中,分别对聚焦不同的图像进行Shearlet变换,并基于本文提出的融合规则,对分解后的高低频系数进行融合处理.通过与多种算法的比较实验证明了本文提出的算法融合的图像具有更高的清晰度和更加丰富的细节信息.在多光谱和全色图像的融合处理中,提出了一种基于Shearlet变换与HSV变换相结合的图像融合方法.该算法首先对多光谱图像作HSV变换,将得到的V分量与全色图像进行Shearlet分解与融合,在融合过程中对分解系数选用特定的融合准则进行融合,最后将融合生成新的分量与H、S分量进行HSV逆变换产生新的RGB融合图像.该算法在空间分辨率和光谱特性两方面达到了良好的平衡,融合后的图像在减少光谱失真的同时,有效增强了空间分辨率.仿真实验证明,本文算法融合的图像与传统的多光谱和全色图像融合算法相比,具有更佳的融合性能和视觉效果. 展开更多
关键词 多聚焦图像 多光谱图像 全色图像 shearlet变换 HSV变换
在线阅读 下载PDF
基于粒子群优化的Shearlet自适应图像去噪 被引量:15
14
作者 赵嘉 孙辉 +1 位作者 邓承志 陈习 《小型微型计算机系统》 CSCD 北大核心 2011年第6期1147-1150,共4页
研究Shearlet变换域图像去噪阈值选取的问题,提出Shearlet变换域图像去噪自适应阈值选取方法.该方法根据Shear-let变换域不同尺度和方向系数的分布特性,采用粒子群优化算法自适应地确定各尺度和方向的最优阈值,实现基于图像内容的自适... 研究Shearlet变换域图像去噪阈值选取的问题,提出Shearlet变换域图像去噪自适应阈值选取方法.该方法根据Shear-let变换域不同尺度和方向系数的分布特性,采用粒子群优化算法自适应地确定各尺度和方向的最优阈值,实现基于图像内容的自适应去噪.仿真实验表明,该方法能有效滤除图像的噪声,较好地保留图像的边缘信息.同时,去噪后图像具有更高的峰值信噪比(PSNR). 展开更多
关键词 shearlet变换 粒子群优化算法 图像去噪 峰值信噪比
在线阅读 下载PDF
Shearlet域稀疏约束地震数据重建 被引量:7
15
作者 刘成明 王德利 +1 位作者 胡斌 王通 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2016年第6期1855-1864,共10页
在地震数据处理流程中,通常对不规则的、稀疏的或者缺失的地震数据进行插值处理,通过插值方法来避免多次波的预测错误和成像假频等现象,使地震数据处理更加精准。Shearlet变换是一种多尺度变换,具有最佳的稀疏性、方向性以及局部化特性... 在地震数据处理流程中,通常对不规则的、稀疏的或者缺失的地震数据进行插值处理,通过插值方法来避免多次波的预测错误和成像假频等现象,使地震数据处理更加精准。Shearlet变换是一种多尺度变换,具有最佳的稀疏性、方向性以及局部化特性。将Shearlet变换与基于Landweber加速下降迭代方法结合起来对地震数据进行插值,在保证求解精度的同时提高了计算效率。信号和噪声在Shearlet域具有不同的分布特点,通过阈值法压制随机噪声,可提高算法的抗噪性。此外,采用jitter采样的方式,更好地压制了假频信息。理论和实际地震数据验证了该方法的有效性。 展开更多
关键词 shearlet变换 插值 稀疏变换 压缩感知 jitter采样
在线阅读 下载PDF
SAR图像水域的改进Shearlet边缘检测 被引量:16
16
作者 侯彪 胡育辉 焦李成 《中国图象图形学报》 CSCD 北大核心 2010年第10期1549-1554,共6页
SAR图像水域边缘检测中,传统算法由于不能较好地克服斑点噪声影响,因此检测出的虚假边缘较多。利用多尺度几何Shearlet变换对曲线精确有效检测等特点,通过改进Shearlet变换并结合聚类及Snake模型等方法,提出了一种新的SAR图像水域检测... SAR图像水域边缘检测中,传统算法由于不能较好地克服斑点噪声影响,因此检测出的虚假边缘较多。利用多尺度几何Shearlet变换对曲线精确有效检测等特点,通过改进Shearlet变换并结合聚类及Snake模型等方法,提出了一种新的SAR图像水域检测方法。实验结果表明,该方法不仅提高了边缘检测的完整性和精确性,而且有效克服了斑点噪声的影响,对SAR图像水域边缘的检测是有效可行的。 展开更多
关键词 shearlet变换 SAR图像 水域 边缘检测
原文传递
全变差正则化的Shearlet收缩去噪 被引量:7
17
作者 胡海智 孙辉 +2 位作者 邓承志 陈习 柳枝华 《中国图象图形学报》 CSCD 北大核心 2011年第2期168-173,共6页
Shearlet是一种新型的多尺度几何分析工具,通过对基本函数缩放、剪切和平移等仿射变换生成具有不同特征的Shearlet函数,能够对图像进行稀疏表示且产生最优逼近。首先提出了一种Shearlet变换的数字实现方法,然后提出了一种结合Shearlet... Shearlet是一种新型的多尺度几何分析工具,通过对基本函数缩放、剪切和平移等仿射变换生成具有不同特征的Shearlet函数,能够对图像进行稀疏表示且产生最优逼近。首先提出了一种Shearlet变换的数字实现方法,然后提出了一种结合Shearlet变换和变分法的图像去噪方法。该方法采用Shearlet变换域约束条件的全变差正则化模型,可以去除简单阈值处理后产生的伪吉布斯效应。实验结果表明,该方法在抑噪和保持边缘的同时,取得了好的视觉效果和更高的PSNR值。 展开更多
关键词 shearlet变换 全变差 图像去噪 峰值信噪比
原文传递
基于复Shearlet域高斯混合模型的SAR图像去噪 被引量:7
18
作者 刘帅奇 胡绍海 肖扬 《航空学报》 EI CAS CSCD 北大核心 2013年第1期173-180,共8页
结合双树复小波的平移不变性、多分辨率性和剪切波变换的灵活可选的多方向性,提出一种新的图像表达方法——复Shearlet变换。针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像的相干噪声特点,建立了复Shearlet系数域的高斯混合模型(... 结合双树复小波的平移不变性、多分辨率性和剪切波变换的灵活可选的多方向性,提出一种新的图像表达方法——复Shearlet变换。针对合成孔径雷达(Synthetic Aperture Radar,SAR)图像的相干噪声特点,建立了复Shearlet系数域的高斯混合模型(Gaussian Mixture Model,GSM),在此基础上应用贝叶斯最小二乘法进行系数估计,最后进行复Shearlet反变换得到去噪以后的SAR图像。仿真结果和分析表明:本文提出的算法相比其他变换域去噪算法,不仅去噪后的图像的峰值信噪比(Peak Signal to Noise Ratio,PSNR)有所提高,而且去噪后的图像更平滑,且与Shearlet域高斯混合模型相比,本文算法速度快了两倍多。 展开更多
关键词 shearlet去噪 高斯混合模型 shearlet变换 合成孔径雷达图像去噪 相干斑噪声
原文传递
基于Shearlet变换稀疏约束地震数据重建 被引量:21
19
作者 冯飞 王征 +1 位作者 刘成明 王德利 《石油物探》 EI CSCD 北大核心 2016年第5期682-691,共10页
地震数据重建是地震数据处理流程中关键步骤之一,重建效果的好坏直接影响到后续的多次波消除以及偏移成像效果。为了获得更好的重建效果,提出了以压缩感知为理论基础,采用jitter欠采样的Shearlet变换稀疏约束地震数据重建方法。将Shear... 地震数据重建是地震数据处理流程中关键步骤之一,重建效果的好坏直接影响到后续的多次波消除以及偏移成像效果。为了获得更好的重建效果,提出了以压缩感知为理论基础,采用jitter欠采样的Shearlet变换稀疏约束地震数据重建方法。将Shearlet变换与凸集投影(POCS)算法结合起来在动校正预处理后对地震数据进行重建,增强了地震数据在Shearlet域的稀疏性。理论分析和实际地震数据验证结果表明,该方法可以在部分地震数据缺失的情况下取得很好的重建效果,有效地解决了假频问题。 展开更多
关键词 shearlet变换 数据重建 稀疏变换 压缩感知 jitter欠采样
在线阅读 下载PDF
基于Shearlet变换的图像去噪算法 被引量:23
20
作者 胡海智 孙辉 +3 位作者 邓承志 陈习 柳枝华 占惠星 《计算机应用》 CSCD 北大核心 2010年第6期1562-1564,共3页
针对传统变换域去噪算法的不足,提出一种基于Shearlet变换的图像去噪算法。该算法首先在Shearlet变换理论基础上实现了一种分解和重构的方法,然后用Monte-Carlo方法对高频系数进行估计,最后通过阈值函数进行收缩去噪。实验结果表明,该... 针对传统变换域去噪算法的不足,提出一种基于Shearlet变换的图像去噪算法。该算法首先在Shearlet变换理论基础上实现了一种分解和重构的方法,然后用Monte-Carlo方法对高频系数进行估计,最后通过阈值函数进行收缩去噪。实验结果表明,该算法在抑噪和保持边缘的同时,取得了较好的视觉效果和更高的PSNR值。 展开更多
关键词 shearlet变换 去噪 峰值信噪比 图像处理 多尺度几何分析
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部