期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Unsupervised side-channel power analysis based on invariant information clustering
1
作者 Ning Yang Long-De Yan +4 位作者 Bi-Yang Liu Xiang Li Ai-Dong Chen Lu Zeng Wei-Feng Liu 《Journal of Electronic Science and Technology》 2025年第4期1-13,共13页
Side-channel analysis(SCA)has emerged as a research hotspot in the field of cryptanalysis.Among various approaches,unsupervised deep learning-based methods demonstrate powerful information extraction capabilities with... Side-channel analysis(SCA)has emerged as a research hotspot in the field of cryptanalysis.Among various approaches,unsupervised deep learning-based methods demonstrate powerful information extraction capabilities without requiring labeled data.However,existing unsupervised methods,particularly those represented by differential deep learning analysis(DDLA)and its improved variants,while overcoming the dependency on labeled data inherent in template analysis,still suffer from high time complexity and training costs when handling key byte difference comparisons.To address this issue,this paper introduces invariant information clustering(IIC)into SCA for the first time,and thus proposes a novel unsupervised learning-based SCA method,named IIC-SCA.By leveraging mutual information maximization techniques for automatic feature extraction of power leakage data,our approach achieves key recovery through a single training session,eliminating the prohibitive computational overhead of traditional methods that require separate training for all possible key bytes.Experimental results on the ASCAD dataset demonstrate successful key extraction using only 50000 training traces and 2000 attack traces.Furthermore,compared with DDLA,the proposed method reduces training time by approximately 93.40%and memory consumption by about 6.15%,significantly decreasing the temporal and resource costs of unsupervised SCA.This breakthrough provides new insights for developing low-cost,high-efficiency cryptographic attack methodologies. 展开更多
关键词 Deep clustering Mutual information maximization non-profiled analysis Side-channel analysis Unsupervised learning
在线阅读 下载PDF
基于聚类分析的轻量化掩码分析方法 被引量:2
2
作者 唐明 王欣 +1 位作者 胡晓波 孙乐昊 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2016年第3期230-234,共5页
轻量化掩码是资源受限的密码芯片的主要防护方法,而现阶段针对掩码的分析方法都不适用于轻量化掩码.本文提出了基于聚类分析的non-profiled侧信道分析方法,对通用轻量化掩码方案进行安全性分析:分别利用PCA(principal component analys... 轻量化掩码是资源受限的密码芯片的主要防护方法,而现阶段针对掩码的分析方法都不适用于轻量化掩码.本文提出了基于聚类分析的non-profiled侧信道分析方法,对通用轻量化掩码方案进行安全性分析:分别利用PCA(principal component analysis)和FFT(fast Fourier transform)对功耗曲线进行特征提取以准确地选择掩码对应的特征点,然后将每条功耗曲线的特征点作为其特征按掩码单字节取值进行聚类.通过对DPA Contest V4.1竞赛提供的实测数据的分析表明本文提出的non-profiled侧信道分析方法适用于通用轻量化掩码方案,同时本文所采用的特征提取方法也适用于侧信道分析预处理阶段的特征点选择. 展开更多
关键词 掩码方案 轻量化防护 non-profiled分析 侧信道分析 聚类分析
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部