期刊文献+
共找到9,644篇文章
< 1 2 250 >
每页显示 20 50 100
Construction of a Maritime Knowledge Graph Using GraphRAG for Entity and Relationship Extraction from Maritime Documents 被引量:1
1
作者 Yi Han Tao Yang +2 位作者 Meng Yuan Pinghua Hu Chen Li 《Journal of Computer and Communications》 2025年第2期68-93,共26页
In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi... In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making. 展开更多
关键词 Maritime Knowledge Graph GraphRAG entity and Relationship Extraction Document Management
在线阅读 下载PDF
基于GEOWAY Entity 的存量DLG转基础地理实体流程探讨
2
作者 张岱琼 《测绘与空间地理信息》 2025年第6期77-80,共4页
自然资源部于2021年3月发布的《新型基础测绘体系建设试点技术大纲》指出,突破口是地理实体,以此积极推进新型基础测绘试点工作。其中,一项非常重要的任务就是将存量基础测绘矢量数据DLG转为地理实体,这样可以大大降低构建地理实体的成... 自然资源部于2021年3月发布的《新型基础测绘体系建设试点技术大纲》指出,突破口是地理实体,以此积极推进新型基础测绘试点工作。其中,一项非常重要的任务就是将存量基础测绘矢量数据DLG转为地理实体,这样可以大大降低构建地理实体的成本。本文先分析存量DLG,接着理清DLG、图元和地理实体之间的关系,然后基于山西省基础地理实体试点项目,探讨通过GEOWAY Entity软件实现忻府区存量DLG转地理实体的流程,以实际操作验证了流程的可行性,并提出未来改进的方向。 展开更多
关键词 GEOWAY entity 存量DLG 基础地理实体 流程
在线阅读 下载PDF
Chinese Named Entity Recognition Method for Musk Deer Domain Based on Cross-Attention Enhanced Lexicon Features
3
作者 Yumei Hao Haiyan Wang Dong Zhang 《Computers, Materials & Continua》 2025年第5期2989-3005,共17页
Named entity recognition(NER)in musk deer domain is the extraction of specific types of entities from unstructured texts,constituting a fundamental component of the knowledge graph,Q&A system,and text summarizatio... Named entity recognition(NER)in musk deer domain is the extraction of specific types of entities from unstructured texts,constituting a fundamental component of the knowledge graph,Q&A system,and text summarization system of musk deer domain.Due to limited annotated data,diverse entity types,and the ambiguity of Chinese word boundaries in musk deer domain NER,we present a novel NER model,CAELF-GP,which is based on cross-attention mechanism enhanced lexical features(CAELF).Specifically,we employ BERT as a character encoder and advocate the integration of external lexical information at the character representation layer.In the feature fusion module,instead of indiscriminately merging external dictionary information,we innovatively adopted a feature fusion method based on a cross-attention mechanism,which guides the model to focus on important lexical information by calculating the correlation between each character and its corresponding word sets.This module enhances the model’s semantic representation ability and entity boundary recognition capability.Ultimately,we introduce the decoding module of GlobalPointer(GP)for entity type recognition,capable of identifying both nested and non-nested entities.Since there is currently no publicly available dataset for the musk deer domain,we built a named entity recognition dataset for this domain by collecting relevant literature and working under the guidance of domain experts.The dataset facilitates the training and validation of the model and provides data foundation for subsequent related research.The model undergoes experimentation on two public datasets and the dataset of musk deer domain.The results show that it is superior to the baseline models,offering a promising technical avenue for the intelligent recognition of named entities in the musk deer domain. 展开更多
关键词 Named entity recognition musk deer cross-attention lexicon enhancement
在线阅读 下载PDF
Multi-Modal Pre-Synergistic Fusion Entity Alignment Based on Mutual Information Strategy Optimization
4
作者 Huayu Li Xinxin Chen +3 位作者 Lizhuang Tan Konstantin I.Kostromitin Athanasios V.Vasilakos Peiying Zhang 《Computers, Materials & Continua》 2025年第11期4133-4153,共21页
To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities... To address the challenge of missing modal information in entity alignment and to mitigate information loss or bias arising frommodal heterogeneity during fusion,while also capturing shared information acrossmodalities,this paper proposes a Multi-modal Pre-synergistic Entity Alignmentmodel based on Cross-modalMutual Information Strategy Optimization(MPSEA).The model first employs independent encoders to process multi-modal features,including text,images,and numerical values.Next,a multi-modal pre-synergistic fusion mechanism integrates graph structural and visual modal features into the textual modality as preparatory information.This pre-fusion strategy enables unified perception of heterogeneous modalities at the model’s initial stage,reducing discrepancies during the fusion process.Finally,using cross-modal deep perception reinforcement learning,the model achieves adaptive multilevel feature fusion between modalities,supporting learningmore effective alignment strategies.Extensive experiments on multiple public datasets show that the MPSEA method achieves gains of up to 7% in Hits@1 and 8.2% in MRR on the FBDB15K dataset,and up to 9.1% in Hits@1 and 7.7% in MRR on the FBYG15K dataset,compared to existing state-of-the-art methods.These results confirm the effectiveness of the proposed model. 展开更多
关键词 Knowledge graph MULTI-MODAL entity alignment feature fusion pre-synergistic fusion
在线阅读 下载PDF
Tibetan Medical Named Entity Recognition Based on Syllable-Word-Sentence Embedding Transformer
5
作者 Jin Zhang Ziyue Zhang +7 位作者 Lobsang Yeshi Dorje Tashi Xiangshi Wang Yuqing Cai Yongbin Yu Xiangxiang Wang Nyima Tashi Gadeng Luosang 《CAAI Transactions on Intelligence Technology》 2025年第4期1148-1158,共11页
Tibetan medical named entity recognition(Tibetan MNER)involves extracting specific types of medical entities from unstructured Tibetan medical texts.Tibetan MNER provide important data support for the work related to ... Tibetan medical named entity recognition(Tibetan MNER)involves extracting specific types of medical entities from unstructured Tibetan medical texts.Tibetan MNER provide important data support for the work related to Tibetan medicine.However,existing Tibetan MNER methods often struggle to comprehensively capture multi-level semantic information,failing to sufficiently extract multi-granularity features and effectively filter out irrelevant information,which ultimately impacts the accuracy of entity recognition.This paper proposes an improved embedding representation method called syllable-word-sentence embedding.By leveraging features at different granularities and using un-scaled dot-product attention to focus on key features for feature fusion,the syllable-word-sentence embedding is integrated into the transformer,enhancing the specificity and diversity of feature representations.The model leverages multi-level and multi-granularity semantic information,thereby improving the performance of Tibetan MNER.We evaluate our proposed model on datasets from various domains.The results indicate that the model effectively identified three types of entities in the Tibetan news dataset we constructed,achieving an F1 score of 93.59%,which represents an improvement of 1.24%compared to the vanilla FLAT.Additionally,results from the Tibetan medical dataset we developed show that it is effective in identifying five kinds of medical entities,with an F1 score of 71.39%,which is a 1.34%improvement over the vanilla FLAT. 展开更多
关键词 named entity recognition syllable-word-sentence embedding Tibetan lexicon Tibetan medicine
在线阅读 下载PDF
Syntax-Enhanced Entity Relation Extraction with Complex Knowledge
6
作者 Mingwen Bi Hefei Chen Zhenghong Yang 《Computers, Materials & Continua》 2025年第4期861-876,共16页
Entity relation extraction,a fundamental and essential task in natural language processing(NLP),has garnered significant attention over an extended period.,aiming to extract the core of semantic knowledge from unstruc... Entity relation extraction,a fundamental and essential task in natural language processing(NLP),has garnered significant attention over an extended period.,aiming to extract the core of semantic knowledge from unstructured text,i.e.,entities and the relations between them.At present,the main dilemma of Chinese entity relation extraction research lies in nested entities,relation overlap,and lack of entity relation interaction.This dilemma is particularly prominent in complex knowledge extraction tasks with high-density knowledge,imprecise syntactic structure,and lack of semantic roles.To address these challenges,this paper presents an innovative“character-level”Chinese part-of-speech(CN-POS)tagging approach and incorporates part-of-speech(POS)information into the pre-trained model,aiming to improve its semantic understanding and syntactic information processing capabilities.Additionally,A relation reference filling mechanism(RF)is proposed to enhance the semantic interaction between relations and entities,utilize relations to guide entity modeling,improve the boundary prediction ability of entity models for nested entity phenomena,and increase the cascading accuracy of entity-relation triples.Meanwhile,the“Queue”sub-task connection strategy is adopted to alleviate triplet cascading errors caused by overlapping relations,and a Syntax-enhanced entity relation extraction model(SE-RE)is constructed.The model showed excellent performance on the self-constructed E-commerce Product Information dataset(EPI)in this article.The results demonstrate that integrating POS enhancement into the pre-trained encoding model significantly boosts the performance of entity relation extraction models compared to baseline methods.Specifically,the F1-score fluctuation in subtasks caused by error accumulation was reduced by 3.21%,while the F1-score for entity-relation triplet extraction improved by 1.91%. 展开更多
关键词 entity relation extraction complex knowledge syntax-enhanced semantic interaction pre-trained BERT
在线阅读 下载PDF
Causal Representation Enhances Cross-Domain Named Entity Recognition in Large Language Models
7
作者 Jiahao Wu Jinzhong Xu +2 位作者 Xiaoming Liu Guan Yang Jie Liu 《Computers, Materials & Continua》 2025年第5期2809-2828,共20页
Large language models cross-domain named entity recognition task in the face of the scarcity of large language labeled data in a specific domain,due to the entity bias arising from the variation of entity information ... Large language models cross-domain named entity recognition task in the face of the scarcity of large language labeled data in a specific domain,due to the entity bias arising from the variation of entity information between different domains,which makes large language models prone to spurious correlations problems when dealing with specific domains and entities.In order to solve this problem,this paper proposes a cross-domain named entity recognition method based on causal graph structure enhancement,which captures the cross-domain invariant causal structural representations between feature representations of text sequences and annotation sequences by establishing a causal learning and intervention module,so as to improve the utilization of causal structural features by the large languagemodels in the target domains,and thus effectively alleviate the false entity bias triggered by the false relevance problem;meanwhile,through the semantic feature fusion module,the semantic information of the source and target domains is effectively combined.The results show an improvement of 2.47%and 4.12%in the political and medical domains,respectively,compared with the benchmark model,and an excellent performance in small-sample scenarios,which proves the effectiveness of causal graph structural enhancement in improving the accuracy of cross-domain entity recognition and reducing false correlations. 展开更多
关键词 Large language model entity bias causal graph structure
在线阅读 下载PDF
Multi-Modal Named Entity Recognition with Auxiliary Visual Knowledge and Word-Level Fusion
8
作者 Huansha Wang Ruiyang Huang +1 位作者 Qinrang Liu Xinghao Wang 《Computers, Materials & Continua》 2025年第6期5747-5760,共14页
Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or ... Multi-modal Named Entity Recognition(MNER)aims to better identify meaningful textual entities by integrating information from images.Previous work has focused on extracting visual semantics at a fine-grained level,or obtaining entity related external knowledge from knowledge bases or Large Language Models(LLMs).However,these approaches ignore the poor semantic correlation between visual and textual modalities in MNER datasets and do not explore different multi-modal fusion approaches.In this paper,we present MMAVK,a multi-modal named entity recognition model with auxiliary visual knowledge and word-level fusion,which aims to leverage the Multi-modal Large Language Model(MLLM)as an implicit knowledge base.It also extracts vision-based auxiliary knowledge from the image formore accurate and effective recognition.Specifically,we propose vision-based auxiliary knowledge generation,which guides the MLLM to extract external knowledge exclusively derived from images to aid entity recognition by designing target-specific prompts,thus avoiding redundant recognition and cognitive confusion caused by the simultaneous processing of image-text pairs.Furthermore,we employ a word-level multi-modal fusion mechanism to fuse the extracted external knowledge with each word-embedding embedded from the transformerbased encoder.Extensive experimental results demonstrate that MMAVK outperforms or equals the state-of-the-art methods on the two classical MNER datasets,even when the largemodels employed have significantly fewer parameters than other baselines. 展开更多
关键词 Multi-modal named entity recognition large language model multi-modal fusion
在线阅读 下载PDF
A Chinese Named Entity Recognition Method for News Domain Based on Transfer Learning and Word Embeddings
9
作者 Rui Fang Liangzhong Cui 《Computers, Materials & Continua》 2025年第5期3247-3275,共29页
Named Entity Recognition(NER)is vital in natural language processing for the analysis of news texts,as it accurately identifies entities such as locations,persons,and organizations,which is crucial for applications li... Named Entity Recognition(NER)is vital in natural language processing for the analysis of news texts,as it accurately identifies entities such as locations,persons,and organizations,which is crucial for applications like news summarization and event tracking.However,NER in the news domain faces challenges due to insufficient annotated data,complex entity structures,and strong context dependencies.To address these issues,we propose a new Chinesenamed entity recognition method that integrates transfer learning with word embeddings.Our approach leverages the ERNIE pre-trained model for transfer learning and obtaining general language representations and incorporates the Soft-lexicon word embedding technique to handle varied entity structures.This dual-strategy enhances the model’s understanding of context and boosts its ability to process complex texts.Experimental results show that our method achieves an F1 score of 94.72% on a news dataset,surpassing baseline methods by 3%–4%,thereby confirming its effectiveness for Chinese-named entity recognition in the news domain. 展开更多
关键词 News domain named entity recognition(NER) transfer learning word embeddings ERNIE soft-lexicon
在线阅读 下载PDF
Railway accident entity extraction method based on accident phase classification and mutual learning
10
作者 Zhibo Cheng Yanhua Wu +2 位作者 Zheqian Liu Yong Shi Ze Li 《Railway Sciences》 2025年第6期815-832,共18页
Purpose–This study aims to enhance the accuracy of key entity extraction from railway accident report texts and address challenges such as complex domain-specific semantics,data sparsity and strong inter-sentence sem... Purpose–This study aims to enhance the accuracy of key entity extraction from railway accident report texts and address challenges such as complex domain-specific semantics,data sparsity and strong inter-sentence semantic dependencies.A robust entity extraction method tailored for accident texts is proposed.Design/methodology/approach–This method is implemented through a dual-branch multi-task mutual learning model named R-MLP,which jointly performs entity recognition and accident phase classification.The model leverages a shared BERT encoder to extract contextual features and incorporates a sentence span indexing module to align feature granularity.A cross-task mutual learning mechanism is also introduced to strengthen semantic representation.Findings–R-MLP effectively mitigates the impact of semantic complexity and data sparsity in domain entities and enhances the model’s ability to capture inter-sentence semantic dependencies.Experimental results show that R-MLP achieves a maximum F1-score of 0.736 in extracting six types of key railway accident entities,significantly outperforming baseline models such as RoBERTa and MacBERT.Originality/value–This demonstrates the proposed method’s superior generalization and accuracy in domainspecific entity extraction tasks,confirming its effectiveness and practical value. 展开更多
关键词 Accident report texts entity extraction Accident phase classification Multi-task model Mutual learning mechanism
在线阅读 下载PDF
Named Entity Identification of Chinese Poetry and Wine Culture Based on ALBERT
11
作者 YANG Zhuang LI Zhaofei +2 位作者 WANG Jihua WEI Xudong ZHANG Yijie 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期1065-1072,共8页
The task of identifying Chinese named entities of Chinese poetry and wine culture is a key step in the construction of a knowledge graph and a question and answer system.Aimed at the characteristics of Chinese poetry ... The task of identifying Chinese named entities of Chinese poetry and wine culture is a key step in the construction of a knowledge graph and a question and answer system.Aimed at the characteristics of Chinese poetry and wine culture entities with different lengths and high training cost of named entity recognition models at the present stage,this study proposes a lite BERT+bi-directional long short-term memory+attentional mechanisms+conditional random field(ALBERT+BILSTM+Att+CRF).The method first obtains the characterlevel semantic information by ALBERT module,then extracts its high-dimensional features by BILSTM module,weights the original word vector and the learned text vector by attention layer,and finally predicts the true label in CRF module(including five types:poem title,author,time,genre,and category).Through experiments on data sets related to Chinese poetry and wine culture,the results show that the method is more effective than existing mainstream models and can efficiently extract important entity information in Chinese poetry and wine culture,which is an effective method for the identification of named entities of varying lengths of poetry. 展开更多
关键词 poetry and wine culture named entity identification deep learning ALBERT bi-directional long short-term memory(BILSTM) attentional mechanisms(Att) conditional random field(CRF)
原文传递
融合主题和实体嵌入的双向提示调优事件论元抽取
12
作者 陈千 成凯璇 +3 位作者 郭鑫 张晓霞 王素格 李艳红 《计算机科学》 北大核心 2026年第1期278-284,共7页
近年来,提示学习在自然语言处理领域得到了广泛应用。据调研,论元角色与文本中的主题往往有高度的语义相关性,且现有的提示调优方法忽略了实体信息和论元之间的交互。为此,提出一种融合主题和实体嵌入的双向提示调优事件论元抽取模型(TE... 近年来,提示学习在自然语言处理领域得到了广泛应用。据调研,论元角色与文本中的主题往往有高度的语义相关性,且现有的提示调优方法忽略了实体信息和论元之间的交互。为此,提出一种融合主题和实体嵌入的双向提示调优事件论元抽取模型(TEPEAE)。首先,使用主题模型提取主题特征并进行主题嵌入化表示;其次,基于触发词、论元和实体信息构建提示模板,并将主题嵌入融入模板;然后,利用掩码语言模型预测每个实体的角色标签;最后,将标签从标签词空间映射到论元角色空间。在ACE2005-EN和ERE-EN数据集上的实验结果表明,TEPEAE优于基线模型,F1值分别达到79.53%和78.60%,验证了TEPEAE的有效性。此外,其在低资源场景下依然展现出卓越的性能,进一步证明其具有更强的鲁棒性。 展开更多
关键词 提示学习 事件论元抽取 实体嵌入 主题嵌入 注意力机制
在线阅读 下载PDF
基于表示学习的跨学科概念关联研究
13
作者 黄京 张光照 王忠义 《现代情报》 北大核心 2026年第2期172-184,共13页
[目的/意义]本研究旨在解决概念在多阶语义关系的深度表示学习和跨学科关联中的问题,以突破传统方法的表层特征匹配局限。[方法/过程]本文基于学科概念知识图谱,提出了跨学科概念关联方法,该方法借助基于表示学习的知识对齐模型,综合语... [目的/意义]本研究旨在解决概念在多阶语义关系的深度表示学习和跨学科关联中的问题,以突破传统方法的表层特征匹配局限。[方法/过程]本文基于学科概念知识图谱,提出了跨学科概念关联方法,该方法借助基于表示学习的知识对齐模型,综合语法、语义和语用上的相关性,捕捉学科知识图谱中隐含的结构关联特征,构建面向跨学科知识服务的概念关联模型。[结果/结论]本文以“隐私保护”领域为实验对象进行测试,验证了基于表示学习的跨学科概念关联方法的有效性。 展开更多
关键词 跨学科 概念知识融合 知识表示学习 实体对齐 概念关联
在线阅读 下载PDF
融合全局指针网络与对比学习的嵌套命名实体识别
14
作者 刘继 谢京城 《计算机应用研究》 北大核心 2026年第1期129-135,共7页
为解决现有嵌套命名实体识别方法中存在的实体表示不充分、边界模糊和语义相似实体难以区分的问题,提出了一种基于全局指针网络与对比学习融合的中文嵌套命名实体识别方法。采用全局指针机制,通过构建实体头尾指针矩阵,将实体识别转换... 为解决现有嵌套命名实体识别方法中存在的实体表示不充分、边界模糊和语义相似实体难以区分的问题,提出了一种基于全局指针网络与对比学习融合的中文嵌套命名实体识别方法。采用全局指针机制,通过构建实体头尾指针矩阵,将实体识别转换为指针预测问题,引入对比学习框架增强实体表示的语义判别能力,采用基于移动平均的梯度归一化策略,平衡多任务学习中各子任务的优化难度。在CLUENER2020和CMeEE数据集上的实验表明,该方法与基线global pointer模型相比,F 1值分别提升2.30和2.55个百分点,验证了其在中文嵌套命名实体识别任务中的有效性。 展开更多
关键词 命名实体识别 嵌套实体 全局指针网络 对比学习 梯度归一化
在线阅读 下载PDF
Entity Framework在KR脱硫自动控制系统中的应用 被引量:2
15
作者 但斌斌 罗欢 +2 位作者 陈奎生 熊凌 容芷君 《制造业自动化》 北大核心 2013年第5期8-10,共3页
本文介绍一种以EF为框架的KR脱硫自动控制系统。该系统用PLC控制脱硫设备和处理生产数据,2个S7-300PLC分别控制两台扒渣机,1个S7-400控制搅拌头。2个工控机实现系统的双机热备。重点研究了以EF为技术框架,运用EF中新特性的功能,如LINQ、... 本文介绍一种以EF为框架的KR脱硫自动控制系统。该系统用PLC控制脱硫设备和处理生产数据,2个S7-300PLC分别控制两台扒渣机,1个S7-400控制搅拌头。2个工控机实现系统的双机热备。重点研究了以EF为技术框架,运用EF中新特性的功能,如LINQ、EDM,完成PC上位机与控制系统中PLC下位机之间不同类型数据处理方法,展现EF在传统ADO基础上新特性在控制系统中的应用。为基于C#以EF为技术框架的上位机控制大型机械设备控制系统提供了参考。 展开更多
关键词 KR脱硫 自动控制ADO NET entity FRAMEWORK
在线阅读 下载PDF
Bean管理的EntityBean与Oracle数据库的互操作应用 被引量:1
16
作者 刘鑫 张卫 翟丽芳 《计算机应用》 CSCD 北大核心 2002年第8期117-119,共3页
重点讨论了Bean管理的EntityBean对Oracle数据库的访问 ,包括连接、插入、查询、更新和删除操作。
关键词 互操作 ORACLE数据库 entity BEAN Bean管理
在线阅读 下载PDF
基于LINQ to Entity数据访问技术的应用研究 被引量:8
17
作者 马鹏烜 《现代计算机》 2011年第13期41-43,48,共4页
在应用系统编写的过程中.提高编写数据访问代码的效率及代码的健壮性是程序员追求的重要目标。在VisualStudio2008中提供的LINQ技术可以帮助程序员实现这两个目标。LINQ的语法类似于SQL,同时可以使用同样的语法结构对数据集对象、关... 在应用系统编写的过程中.提高编写数据访问代码的效率及代码的健壮性是程序员追求的重要目标。在VisualStudio2008中提供的LINQ技术可以帮助程序员实现这两个目标。LINQ的语法类似于SQL,同时可以使用同样的语法结构对数据集对象、关系数据库、XML数据及EntityFramework数据进行操作。 展开更多
关键词 LINQ to entity 数据访问 entity FRAMEWORK
在线阅读 下载PDF
基于Entity Framework的图书馆光盘管理系统 被引量:2
18
作者 林平荣 鲁昭 黄煜祺 《现代计算机》 2015年第16期56-59,共4页
随着计算机与多媒体技术的普及和应用,图书出版形式呈现多样化,随盘图书越来越多,而在高校数字图书馆的建设过程中,数据存储和光盘共享是一个关键环节,也是一个难题。针对广州大学华软软件学院图书馆在光盘管理方面存在的问题,结合实际... 随着计算机与多媒体技术的普及和应用,图书出版形式呈现多样化,随盘图书越来越多,而在高校数字图书馆的建设过程中,数据存储和光盘共享是一个关键环节,也是一个难题。针对广州大学华软软件学院图书馆在光盘管理方面存在的问题,结合实际情况提出一个基于Entity Framework的光盘管理系统,分析系统实现的关键技术并给出最终实现的效果。 展开更多
关键词 entity FRAMEWORK 图书馆 光盘管理系统 ASP.NET
在线阅读 下载PDF
基于Entity Framework数据持久化技术浅析 被引量:6
19
作者 马鹏烜 《电脑与信息技术》 2011年第4期63-64,71,共3页
在面向对象的应用开发中,对象的持久化问题一直是最受程序员关注的问题之一。Entity Framework是微软新一代对象关系映射解决方案。该项技术基于传统的实体联系模型建立,概念清晰,明显提高开发效率,这一技术必将成为基于.NET平台开发的... 在面向对象的应用开发中,对象的持久化问题一直是最受程序员关注的问题之一。Entity Framework是微软新一代对象关系映射解决方案。该项技术基于传统的实体联系模型建立,概念清晰,明显提高开发效率,这一技术必将成为基于.NET平台开发的主流数据持久化技术。 展开更多
关键词 持久化 entity FRAMEWORK ORM
在线阅读 下载PDF
ADO.NET Entity Framework建模技术研究 被引量:4
20
作者 谢日星 《科技传播》 2010年第21期221-221,共1页
Entity Framework是微软以ADO.NET为基础所发展出来的对象关系对应解决方案,本文总结了部分常见的数据库模型对应的Entity Framework建模参考模型,以提高程序开发效率及代码的正确性,更好地发挥Entity Framework技术优势。
关键词 entity FRAMEWORK 建模 实体类型
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部