In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Conver...In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.展开更多
In this research article,we interrogate two new modifications in inverse Weierstrass iterative method for estimating all roots of non-linear equation simultaneously.These modifications enables us to accelerate the con...In this research article,we interrogate two new modifications in inverse Weierstrass iterative method for estimating all roots of non-linear equation simultaneously.These modifications enables us to accelerate the convergence order of inverse Weierstrass method from 2 to 3.Convergence analysis proves that the orders of convergence of the two newly constructed inverse methods are 3.Using computer algebra system Mathematica,we find the lower bound of the convergence order and verify it theoretically.Dynamical planes of the inverse simultaneous methods and classical iterative methods are generated using MATLAB(R2011b),to present the global convergence properties of inverse simultaneous iterative methods as compared to classical methods.Some non-linear models are taken from Physics,Chemistry and engineering to demonstrate the performance and efficiency of the newly constructed methods.Computational CPU time,and residual graphs of the methods are provided to present the dominance behavior of our newly constructed methods as compared to existing inverse and classical simultaneous iterative methods in the literature.展开更多
For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describ...For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describes, an adaptation of Newton-Raphson method was used for solving the highly nonlinear system of equations describing the formation of equilibrium products in reacting of fuel-additive-air mixtures. This study also shows what possible of the results. In this paper, to be present the efficient numerical algorithms for. solving the combustion problem, to be used nonlinear equations based on the iteration method and high order of the Taylor series. The modified Adomian decomposition method was applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms. Comparisons of results by the new Matlab routines and previous routines, the result data indicate that the new Matlab routines are reliable, typical deviations from previous results are less than 0.05%.展开更多
Zeroing neural dynamic(ZND)model is widely deployed for time-variant non-linear equations(TVNE).Various element-wise non-linear activation functions and integration operations are investigated to enhance the convergen...Zeroing neural dynamic(ZND)model is widely deployed for time-variant non-linear equations(TVNE).Various element-wise non-linear activation functions and integration operations are investigated to enhance the convergence performance and robustness in most proposed ZND models for solving TVNE,leading to a huge cost of hardware implementation and model complexity.To overcome these problems,the authors develop a new norm-based ZND(NBZND)model with strong robustness for solving TVNE,not applying element-wise non-linear activated functions but introducing a two-norm operation to achieve finite-time convergence.Moreover,the authors develop a discretetime NBZND model for the potential deployment of the model on digital computers.Rigorous theoretical analysis for the NBZND is provided.Simulation results substantiate the advantages of the NBZND model for solving TVNE.展开更多
This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic diff...This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.展开更多
In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-_(t)×C_(x)^(n).Under certain assumptions,they prove the existence and uniqueness of holomorphic sol...In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-_(t)×C_(x)^(n).Under certain assumptions,they prove the existence and uniqueness of holomorphic solution near origin of C-_(t)×C-_(x)^(n).展开更多
A closed form of an analytical expression of concentration in the single-enzyme, single-substrate system for the full range of enzyme activities has been derived. The time dependent analytical solution for substrate, ...A closed form of an analytical expression of concentration in the single-enzyme, single-substrate system for the full range of enzyme activities has been derived. The time dependent analytical solution for substrate, enzyme-substrate complex and product concentrations are presented by solving system of non-linear differential equation. We employ He’s Homotopy perturbation method to solve the coupled non-linear differential equations containing a non-linear term related to basic enzymatic reaction. The time dependent simple analytical expressions for substrate, enzyme-substrate and free enzyme concentrations have been derived in terms of dimensionless reaction diffusion parameters ε, λ1, λ2 and λ3 using perturbation method. The numerical solution of the problem is also reported using SCILAB software program. The analytical results are compared with our numerical results. An excellent agreement with simulation data is noted. The obtained results are valid for the whole solution domain.展开更多
For several difference schemes of linear and non-linear evolution equations, taking the one-dimensional linear and non-linear advection equations as examples, a comparative analysis for computational stability is carr...For several difference schemes of linear and non-linear evolution equations, taking the one-dimensional linear and non-linear advection equations as examples, a comparative analysis for computational stability is carried out and the relationship between non-linear computational stability, the construction of difference schemes, and the form of initial values is discussed. It is proved through comparative analysis and numerical experiment that the computational stability of the difference schemes of the non-linear evolution equation are absolutely different from that of the linear evolution equation.展开更多
In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Trans...In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.展开更多
A mathematical model of CE reaction schemes under first or pseudo-first order conditions with different diffusion coefficients at a spherical electrode under non-steady-state conditions is described. The model is base...A mathematical model of CE reaction schemes under first or pseudo-first order conditions with different diffusion coefficients at a spherical electrode under non-steady-state conditions is described. The model is based on non-stationary diffusion equation containing a non-linear reaction term. This paper presents the complex numerical method (Homotopy perturbation method) to solve the system of non-linear differential equation that describes the homogeneous processes coupled to electrode reaction. In this paper the approximate analytical expressions of the non-steady-state concentrations and current at spherical electrodes for homogeneous reactions mechanisms are derived for all values of the reaction diffusion parameters. These approximate results are compared with the available analytical results and are found to be in good agreement.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
In this article,we study the meromorphic solutions of the following non-linear differential equation■where n and k are integers with n≥k≥3,P_(d)(z,f)is a differential polynomial in f of degree d≤n−1,p′js andα′j...In this article,we study the meromorphic solutions of the following non-linear differential equation■where n and k are integers with n≥k≥3,P_(d)(z,f)is a differential polynomial in f of degree d≤n−1,p′js andα′js are non-zero constants.We obtain the expressions of meromorphic solutions of the above equations under some restrictions onα′js.Some examples are given to illustrate the possibilities of our results.展开更多
In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error...In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.展开更多
This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ...This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.展开更多
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
In this article, we consider the non-linear difference equation(f(z + 1)f(z)-1)(f(z)f(z-1)-1) =P(z, f(z))/Q(z, f(z)),where P(z, f(z)) and Q(z, f(z)) are relatively prime polynomials in f(z) with rational coefficients....In this article, we consider the non-linear difference equation(f(z + 1)f(z)-1)(f(z)f(z-1)-1) =P(z, f(z))/Q(z, f(z)),where P(z, f(z)) and Q(z, f(z)) are relatively prime polynomials in f(z) with rational coefficients. For the above equation, the order of growth, the exponents of convergence of zeros and poles of its transcendental meromorphic solution f(z), and the exponents of convergence of poles of difference △f(z) and divided difference △f(z)/f(z)are estimated. Furthermore, we study the forms of rational solutions of the above equation.展开更多
In this paper,we mainly investigate entire solutions of the following two non-linear differential-difference equations f^(n)(z)+ωf^(n-1)(z)f′(z)+f^((k))(z+c)=p_(1)e^(α1 z)+p_(2)e^(α2 z),n≥5 and f^(n)(z)+ωf^(n-1)...In this paper,we mainly investigate entire solutions of the following two non-linear differential-difference equations f^(n)(z)+ωf^(n-1)(z)f′(z)+f^((k))(z+c)=p_(1)e^(α1 z)+p_(2)e^(α2 z),n≥5 and f^(n)(z)+ωf^(n-1)(z)f′(z)+q(z)f^((k))(z+c)e^(Q(z))=p_(1)e^(α1 z)+p_(2)e^(α2 z),n≥4,where k≥0 is an integer,c,ω,p_(1),p_(2),α_(1),α_(2)are non-zero constants,q(z)is a non-vanishing polynomial and Q(z)is a non-constant polynomial.Under some additional hypotheses,we analyze the existence and expressions of transcendental entire solutions of the above equations.展开更多
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
We study the Cauchy problem of the Kolmogorov-Fokker-Planck equations and show that the solution enjoys an analytic smoothing effect with L?initial datum for positive time.
Mesophase pitch carbon fibers have an ultra-high modulus and thermal conductivity that are unmatched by other carbon fibers,making it irreplaceable in many fields.However,due to the high temperature dependence of the ...Mesophase pitch carbon fibers have an ultra-high modulus and thermal conductivity that are unmatched by other carbon fibers,making it irreplaceable in many fields.However,due to the high temperature dependence of the viscosity of the melted pitch and the poor mechanical properties of pitch fibers,it is difficult to reduce the fiber diameter when using continuous spinning.We used the Mathworks Matlab software to optimize the mesophase pitch melt spinning model and to simulate the effects of spinning temperature,mass flow rate,winder speed,and quenching air temperature near the spinneret on the maximum shear rate during drawing.Simulation results demonstrate that applying gradient cooling to the melt upon exiting the spinneret significantly reduces the maximum shear rate and extends the drawing zone,thereby promoting the spinning stability and helping reduce the fiber diameter.In the experiment,instead of quenching in air,we applied gradient cooling to the melt,whose temperature decreased according to the equation Ta=298+278exp(−11.4z),where Ta is the final air temperature in Kelvin,and z is the distance from the spinneret in meters.It was found the gradient cooling greatly improved the draw-down ratio,reducing the average diameter of the pitch fibers from 20.8 to 13.1μm,along with improved process stability.The experimental results are in excellent agreement with the predictions.At the same time,the tensile strength of the 1150°C carbonized fibers increased from 0.6 to 1.1 GPa.Although the degree of orientation of the fibers decreased slightly,the tight bonding between microcrystals,the suppression of splitting,and the smaller diameter improved the mechanical properties of carbon fibers.This study provides an effective method for reducing the fiber diameter while improving continuity.展开更多
基金the Natural Science Foundation of China(Grant Nos.61673169,11301127,11701176,11626101,and 11601485)The Natural Science Foundation of Huzhou City(Grant No.2018YZ07).
文摘In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.
文摘In this research article,we interrogate two new modifications in inverse Weierstrass iterative method for estimating all roots of non-linear equation simultaneously.These modifications enables us to accelerate the convergence order of inverse Weierstrass method from 2 to 3.Convergence analysis proves that the orders of convergence of the two newly constructed inverse methods are 3.Using computer algebra system Mathematica,we find the lower bound of the convergence order and verify it theoretically.Dynamical planes of the inverse simultaneous methods and classical iterative methods are generated using MATLAB(R2011b),to present the global convergence properties of inverse simultaneous iterative methods as compared to classical methods.Some non-linear models are taken from Physics,Chemistry and engineering to demonstrate the performance and efficiency of the newly constructed methods.Computational CPU time,and residual graphs of the methods are provided to present the dominance behavior of our newly constructed methods as compared to existing inverse and classical simultaneous iterative methods in the literature.
文摘For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describes, an adaptation of Newton-Raphson method was used for solving the highly nonlinear system of equations describing the formation of equilibrium products in reacting of fuel-additive-air mixtures. This study also shows what possible of the results. In this paper, to be present the efficient numerical algorithms for. solving the combustion problem, to be used nonlinear equations based on the iteration method and high order of the Taylor series. The modified Adomian decomposition method was applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms. Comparisons of results by the new Matlab routines and previous routines, the result data indicate that the new Matlab routines are reliable, typical deviations from previous results are less than 0.05%.
基金Natural Science Foundation of China,Grant/Award Number:62206109Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2022A1515010976+1 种基金Young Scholar Program of Pazhou Lab,Grant/Award Number:PZL2021KF0022National College Student Innovation and Entrepreneurship Training Program,Grant/Award Number:202410559070。
文摘Zeroing neural dynamic(ZND)model is widely deployed for time-variant non-linear equations(TVNE).Various element-wise non-linear activation functions and integration operations are investigated to enhance the convergence performance and robustness in most proposed ZND models for solving TVNE,leading to a huge cost of hardware implementation and model complexity.To overcome these problems,the authors develop a new norm-based ZND(NBZND)model with strong robustness for solving TVNE,not applying element-wise non-linear activated functions but introducing a two-norm operation to achieve finite-time convergence.Moreover,the authors develop a discretetime NBZND model for the potential deployment of the model on digital computers.Rigorous theoretical analysis for the NBZND is provided.Simulation results substantiate the advantages of the NBZND model for solving TVNE.
基金Supported by the National Natural Science Foundation of China(12001074)the Research Innovation Program of Graduate Students in Hunan Province(CX20220258)+1 种基金the Research Innovation Program of Graduate Students of Central South University(1053320214147)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110025)。
文摘This paper deals with Mckean-Vlasov backward stochastic differential equations with weak monotonicity coefficients.We first establish the existence and uniqueness of solutions to Mckean-Vlasov backward stochastic differential equations.Then we obtain a comparison theorem in one-dimensional situation.
文摘In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-_(t)×C_(x)^(n).Under certain assumptions,they prove the existence and uniqueness of holomorphic solution near origin of C-_(t)×C-_(x)^(n).
文摘A closed form of an analytical expression of concentration in the single-enzyme, single-substrate system for the full range of enzyme activities has been derived. The time dependent analytical solution for substrate, enzyme-substrate complex and product concentrations are presented by solving system of non-linear differential equation. We employ He’s Homotopy perturbation method to solve the coupled non-linear differential equations containing a non-linear term related to basic enzymatic reaction. The time dependent simple analytical expressions for substrate, enzyme-substrate and free enzyme concentrations have been derived in terms of dimensionless reaction diffusion parameters ε, λ1, λ2 and λ3 using perturbation method. The numerical solution of the problem is also reported using SCILAB software program. The analytical results are compared with our numerical results. An excellent agreement with simulation data is noted. The obtained results are valid for the whole solution domain.
基金Acknowledgments. This work was supported by the Outstanding State Key Laboratory Project of the National Natural Science Foundation of China under Grant No. 40023001, the Key Innovation Project of the Chinese Acade-my of Sciences under Grant No.KZCX2-208
文摘For several difference schemes of linear and non-linear evolution equations, taking the one-dimensional linear and non-linear advection equations as examples, a comparative analysis for computational stability is carried out and the relationship between non-linear computational stability, the construction of difference schemes, and the form of initial values is discussed. It is proved through comparative analysis and numerical experiment that the computational stability of the difference schemes of the non-linear evolution equation are absolutely different from that of the linear evolution equation.
文摘In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems.
文摘A mathematical model of CE reaction schemes under first or pseudo-first order conditions with different diffusion coefficients at a spherical electrode under non-steady-state conditions is described. The model is based on non-stationary diffusion equation containing a non-linear reaction term. This paper presents the complex numerical method (Homotopy perturbation method) to solve the system of non-linear differential equation that describes the homogeneous processes coupled to electrode reaction. In this paper the approximate analytical expressions of the non-steady-state concentrations and current at spherical electrodes for homogeneous reactions mechanisms are derived for all values of the reaction diffusion parameters. These approximate results are compared with the available analytical results and are found to be in good agreement.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金supported by the National Natural Science Foundation of China(No.12001117)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110654).
文摘In this article,we study the meromorphic solutions of the following non-linear differential equation■where n and k are integers with n≥k≥3,P_(d)(z,f)is a differential polynomial in f of degree d≤n−1,p′js andα′js are non-zero constants.We obtain the expressions of meromorphic solutions of the above equations under some restrictions onα′js.Some examples are given to illustrate the possibilities of our results.
文摘In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.
基金Supported by National Science Foundation of China(11971027,12171497)。
文摘This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
基金supported by the National Natural Science Foundation of China(11371225)National Natural Science Foundation of Guangdong Province(2016A030313686)
文摘In this article, we consider the non-linear difference equation(f(z + 1)f(z)-1)(f(z)f(z-1)-1) =P(z, f(z))/Q(z, f(z)),where P(z, f(z)) and Q(z, f(z)) are relatively prime polynomials in f(z) with rational coefficients. For the above equation, the order of growth, the exponents of convergence of zeros and poles of its transcendental meromorphic solution f(z), and the exponents of convergence of poles of difference △f(z) and divided difference △f(z)/f(z)are estimated. Furthermore, we study the forms of rational solutions of the above equation.
基金the National Natural Science Foundation of China(11971344)。
文摘In this paper,we mainly investigate entire solutions of the following two non-linear differential-difference equations f^(n)(z)+ωf^(n-1)(z)f′(z)+f^((k))(z+c)=p_(1)e^(α1 z)+p_(2)e^(α2 z),n≥5 and f^(n)(z)+ωf^(n-1)(z)f′(z)+q(z)f^((k))(z+c)e^(Q(z))=p_(1)e^(α1 z)+p_(2)e^(α2 z),n≥4,where k≥0 is an integer,c,ω,p_(1),p_(2),α_(1),α_(2)are non-zero constants,q(z)is a non-vanishing polynomial and Q(z)is a non-constant polynomial.Under some additional hypotheses,we analyze the existence and expressions of transcendental entire solutions of the above equations.
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
基金Supported by NSFC (No.12031006)Fundamental Research Funds for the Central Universities of China。
文摘We study the Cauchy problem of the Kolmogorov-Fokker-Planck equations and show that the solution enjoys an analytic smoothing effect with L?initial datum for positive time.
文摘Mesophase pitch carbon fibers have an ultra-high modulus and thermal conductivity that are unmatched by other carbon fibers,making it irreplaceable in many fields.However,due to the high temperature dependence of the viscosity of the melted pitch and the poor mechanical properties of pitch fibers,it is difficult to reduce the fiber diameter when using continuous spinning.We used the Mathworks Matlab software to optimize the mesophase pitch melt spinning model and to simulate the effects of spinning temperature,mass flow rate,winder speed,and quenching air temperature near the spinneret on the maximum shear rate during drawing.Simulation results demonstrate that applying gradient cooling to the melt upon exiting the spinneret significantly reduces the maximum shear rate and extends the drawing zone,thereby promoting the spinning stability and helping reduce the fiber diameter.In the experiment,instead of quenching in air,we applied gradient cooling to the melt,whose temperature decreased according to the equation Ta=298+278exp(−11.4z),where Ta is the final air temperature in Kelvin,and z is the distance from the spinneret in meters.It was found the gradient cooling greatly improved the draw-down ratio,reducing the average diameter of the pitch fibers from 20.8 to 13.1μm,along with improved process stability.The experimental results are in excellent agreement with the predictions.At the same time,the tensile strength of the 1150°C carbonized fibers increased from 0.6 to 1.1 GPa.Although the degree of orientation of the fibers decreased slightly,the tight bonding between microcrystals,the suppression of splitting,and the smaller diameter improved the mechanical properties of carbon fibers.This study provides an effective method for reducing the fiber diameter while improving continuity.