Zeroing neural dynamic(ZND)model is widely deployed for time-variant non-linear equations(TVNE).Various element-wise non-linear activation functions and integration operations are investigated to enhance the convergen...Zeroing neural dynamic(ZND)model is widely deployed for time-variant non-linear equations(TVNE).Various element-wise non-linear activation functions and integration operations are investigated to enhance the convergence performance and robustness in most proposed ZND models for solving TVNE,leading to a huge cost of hardware implementation and model complexity.To overcome these problems,the authors develop a new norm-based ZND(NBZND)model with strong robustness for solving TVNE,not applying element-wise non-linear activated functions but introducing a two-norm operation to achieve finite-time convergence.Moreover,the authors develop a discretetime NBZND model for the potential deployment of the model on digital computers.Rigorous theoretical analysis for the NBZND is provided.Simulation results substantiate the advantages of the NBZND model for solving TVNE.展开更多
In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Conver...In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.展开更多
In this research article,we interrogate two new modifications in inverse Weierstrass iterative method for estimating all roots of non-linear equation simultaneously.These modifications enables us to accelerate the con...In this research article,we interrogate two new modifications in inverse Weierstrass iterative method for estimating all roots of non-linear equation simultaneously.These modifications enables us to accelerate the convergence order of inverse Weierstrass method from 2 to 3.Convergence analysis proves that the orders of convergence of the two newly constructed inverse methods are 3.Using computer algebra system Mathematica,we find the lower bound of the convergence order and verify it theoretically.Dynamical planes of the inverse simultaneous methods and classical iterative methods are generated using MATLAB(R2011b),to present the global convergence properties of inverse simultaneous iterative methods as compared to classical methods.Some non-linear models are taken from Physics,Chemistry and engineering to demonstrate the performance and efficiency of the newly constructed methods.Computational CPU time,and residual graphs of the methods are provided to present the dominance behavior of our newly constructed methods as compared to existing inverse and classical simultaneous iterative methods in the literature.展开更多
For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describ...For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describes, an adaptation of Newton-Raphson method was used for solving the highly nonlinear system of equations describing the formation of equilibrium products in reacting of fuel-additive-air mixtures. This study also shows what possible of the results. In this paper, to be present the efficient numerical algorithms for. solving the combustion problem, to be used nonlinear equations based on the iteration method and high order of the Taylor series. The modified Adomian decomposition method was applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms. Comparisons of results by the new Matlab routines and previous routines, the result data indicate that the new Matlab routines are reliable, typical deviations from previous results are less than 0.05%.展开更多
In this paper, mathematical models of biofilm mixtures of n-butanol biofilters were discussed. The model is based on the mass transfer in the biofilm interface and chemical oxidation in the biofilm phase and gas phase...In this paper, mathematical models of biofilm mixtures of n-butanol biofilters were discussed. The model is based on the mass transfer in the biofilm interface and chemical oxidation in the biofilm phase and gas phase. An approximate analytical expression of concentration profiles of n-butanol in the biofilm phase and gas phase has been derived using the homotopy perturbation method and hyperbolic function method for all possible values of parameters. Furthermore, in this work, the numerical simulation of the problem is also reported using the Matlab program. Good agreement between the analytical and numerical results is noted. Graphical results are presented and discussed quantitatively to illustrate the solution. The analytical results will be useful in finding the yields of biomass and oxygen consumption, the specific biomass surface area, activation energy and saturation constant for the Michaelis-Menten kinetics.展开更多
In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondl...In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondly,the existence and uniqueness of local solutions are proved by the Sobolev embedding theorem and the comparison principle.Finally,according to the relevant research data and contents of red fire ants,the diffusion area and nest number of red fire ants were simulated without external disturbance.This paper mainly simulates the early diffusion process of red fire ants.In the early diffusion stage,red fire ants grow slowly and then spread over a large area after reaching a certain number.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
In this article,we study the meromorphic solutions of the following non-linear differential equation■where n and k are integers with n≥k≥3,P_(d)(z,f)is a differential polynomial in f of degree d≤n−1,p′js andα′j...In this article,we study the meromorphic solutions of the following non-linear differential equation■where n and k are integers with n≥k≥3,P_(d)(z,f)is a differential polynomial in f of degree d≤n−1,p′js andα′js are non-zero constants.We obtain the expressions of meromorphic solutions of the above equations under some restrictions onα′js.Some examples are given to illustrate the possibilities of our results.展开更多
This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ...This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.展开更多
In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensa...In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensate. Based on the bifurcation theory, we proved the existence of solitary and periodic solutions. The methods we take are the trial equation method and the complete discrimination system for polynomial method. Therefore, we obtain the exact chirped solutions, which are more abundant in type and quantity than the existing results, so that the equation has more profound physical significance. These two methods are rigorously mathematical derivation and calculations, rather than based on certain conditional assumptions. In addition, we give some specific parameters to graphing the motion of the solutions, which helps to understand the propagation of nonlinear waves in fiber optic systems.展开更多
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belon...In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belongs to the Sobolev space H'(R)for some s>2.In addition,we obtain the weak formulation of this equation and prove the existence of both single peakon solution and a multi-peakon dynamic system.展开更多
We study the Cauchy problem of the Kolmogorov-Fokker-Planck equations and show that the solution enjoys an analytic smoothing effect with L?initial datum for positive time.
With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixe...With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixed types.Our primary contribution is the establishment of solution existence,illuminating the dynamics of these complex equations.To tackle this challenging problem,we construct an approximate solution sequence and apply the contraction mapping principle to rigorously prove local solution existence.Our results significantly advance the understanding of nonlinear evolution equations of mixed types.Furthermore,they provide a versatile,powerful approach for tackling analogous challenges across physics,engineering,and applied mathematics,making this work a valuable reference for researchers in these fields.展开更多
In order to find closed form solutions of nonintegrable nonlinear ordinary differential equations,numerous tricks have been proposed.The goal of this short review is to explain how a theorem of Eremenko on meromorphic...In order to find closed form solutions of nonintegrable nonlinear ordinary differential equations,numerous tricks have been proposed.The goal of this short review is to explain how a theorem of Eremenko on meromorphic solutions of some nonlinear ODEs together with some classical,19th-century results,can be turned into algorithms(thus avoiding ad hoc assumptions)which provide all(as opposed to some)solutions in a precise class.To illustrate these methods,we present some new such exact solutions,physically relevant.展开更多
In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary varia...In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary variable approaches.By using a new pressure correction method,the accuracy of the pressure has been greatly improved.Furthermore,one only needs to solve a series of fully decoupled linear equations with constant coefficients at each time step.In addition,we prove the unconditional energy stability of the schemes,rigorously.Finally,plenty of numerical simulations are carried out to verify the convergence rates,stability,and effectiveness of the proposed schemes numerically.展开更多
In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat eq...In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat equation defined on[0,T]×[0,1]driven by double-parameter fractional noise.展开更多
In this paper,we study the following pseudo-relativistic Hartree equation i∂_(t)Ψ-(|x|^(-1)*|Ψ|^(2))Ψwith(t,x)∈R×R^(3)We mainly focus on the normalized ground state solitary waves of the formΨ(t,x)=e^(itμ)...In this paper,we study the following pseudo-relativistic Hartree equation i∂_(t)Ψ-(|x|^(-1)*|Ψ|^(2))Ψwith(t,x)∈R×R^(3)We mainly focus on the normalized ground state solitary waves of the formΨ(t,x)=e^(itμ)φm(x)with||φm||_(2)^(2)=N.We investigate limit behaviors of energy and minimizer of the corresponding frinetional of this equationas m→+∞.We prove that m_(k)^(-3/2)φm_(k)→φ∞(x)in H^(-1/2(R^(3)))by energy method and lim_(m→+∞)+m^(-1)e(N)=e(N),whereφ_(m)(β∞)is a minimizer of e(N)(e(N).展开更多
Let a_(1),a_(2),a_(3)be nonzero integers with gcd(a_(1),a_(2),a_(3))=1,and let k be any positive integer,K=max[3,|a_(1)|,|a_(2)|,|a_(3)|,k].Suppose that l_(1),l_(2),l_(3)are integers each coprime to k.Suppose further ...Let a_(1),a_(2),a_(3)be nonzero integers with gcd(a_(1),a_(2),a_(3))=1,and let k be any positive integer,K=max[3,|a_(1)|,|a_(2)|,|a_(3)|,k].Suppose that l_(1),l_(2),l_(3)are integers each coprime to k.Suppose further that b is any integer satisfying some necessary congruent conditions.The solvability of linear equation a_(1)p_(1)+a_(2)p_(2)+a_(3)p_(3)=b(p_(j)=l_(j)(mod k),1≤j≤3)with prime variables pi,p_(2),ps is investigated.It is proved that if ai,a_(2),a_(3)are all positive,then the above equation is solvable whenever b≥K^(25);if a,a_(2),a_(3)are not all of the same sign,then the above equation has a solution p_(1),p_(2),p_(3)satisfying max(p_(1),p_(2),p_(3))≤3|b|+K^(25).展开更多
基金Natural Science Foundation of China,Grant/Award Number:62206109Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2022A1515010976+1 种基金Young Scholar Program of Pazhou Lab,Grant/Award Number:PZL2021KF0022National College Student Innovation and Entrepreneurship Training Program,Grant/Award Number:202410559070。
文摘Zeroing neural dynamic(ZND)model is widely deployed for time-variant non-linear equations(TVNE).Various element-wise non-linear activation functions and integration operations are investigated to enhance the convergence performance and robustness in most proposed ZND models for solving TVNE,leading to a huge cost of hardware implementation and model complexity.To overcome these problems,the authors develop a new norm-based ZND(NBZND)model with strong robustness for solving TVNE,not applying element-wise non-linear activated functions but introducing a two-norm operation to achieve finite-time convergence.Moreover,the authors develop a discretetime NBZND model for the potential deployment of the model on digital computers.Rigorous theoretical analysis for the NBZND is provided.Simulation results substantiate the advantages of the NBZND model for solving TVNE.
基金the Natural Science Foundation of China(Grant Nos.61673169,11301127,11701176,11626101,and 11601485)The Natural Science Foundation of Huzhou City(Grant No.2018YZ07).
文摘In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature.
文摘In this research article,we interrogate two new modifications in inverse Weierstrass iterative method for estimating all roots of non-linear equation simultaneously.These modifications enables us to accelerate the convergence order of inverse Weierstrass method from 2 to 3.Convergence analysis proves that the orders of convergence of the two newly constructed inverse methods are 3.Using computer algebra system Mathematica,we find the lower bound of the convergence order and verify it theoretically.Dynamical planes of the inverse simultaneous methods and classical iterative methods are generated using MATLAB(R2011b),to present the global convergence properties of inverse simultaneous iterative methods as compared to classical methods.Some non-linear models are taken from Physics,Chemistry and engineering to demonstrate the performance and efficiency of the newly constructed methods.Computational CPU time,and residual graphs of the methods are provided to present the dominance behavior of our newly constructed methods as compared to existing inverse and classical simultaneous iterative methods in the literature.
文摘For a specific combustion problem involving calculations of several species at the equilibrium state, it is simpler to write a general computer program and calculate the combustion concentration. Original work describes, an adaptation of Newton-Raphson method was used for solving the highly nonlinear system of equations describing the formation of equilibrium products in reacting of fuel-additive-air mixtures. This study also shows what possible of the results. In this paper, to be present the efficient numerical algorithms for. solving the combustion problem, to be used nonlinear equations based on the iteration method and high order of the Taylor series. The modified Adomian decomposition method was applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms. Comparisons of results by the new Matlab routines and previous routines, the result data indicate that the new Matlab routines are reliable, typical deviations from previous results are less than 0.05%.
文摘In this paper, mathematical models of biofilm mixtures of n-butanol biofilters were discussed. The model is based on the mass transfer in the biofilm interface and chemical oxidation in the biofilm phase and gas phase. An approximate analytical expression of concentration profiles of n-butanol in the biofilm phase and gas phase has been derived using the homotopy perturbation method and hyperbolic function method for all possible values of parameters. Furthermore, in this work, the numerical simulation of the problem is also reported using the Matlab program. Good agreement between the analytical and numerical results is noted. Graphical results are presented and discussed quantitatively to illustrate the solution. The analytical results will be useful in finding the yields of biomass and oxygen consumption, the specific biomass surface area, activation energy and saturation constant for the Michaelis-Menten kinetics.
基金Supported by National Natural Science Foundation of China(12101482)Postdoctoral Science Foundation of China(2022M722604)+2 种基金General Project of Science and Technology of Shaanxi Province(2023-YBSF-372)The Natural Science Foundation of Shaan Xi Province(2023-JCQN-0016)Shannxi Mathmatical Basic Science Research Project(23JSQ042)。
文摘In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondly,the existence and uniqueness of local solutions are proved by the Sobolev embedding theorem and the comparison principle.Finally,according to the relevant research data and contents of red fire ants,the diffusion area and nest number of red fire ants were simulated without external disturbance.This paper mainly simulates the early diffusion process of red fire ants.In the early diffusion stage,red fire ants grow slowly and then spread over a large area after reaching a certain number.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金supported by the National Natural Science Foundation of China(No.12001117)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110654).
文摘In this article,we study the meromorphic solutions of the following non-linear differential equation■where n and k are integers with n≥k≥3,P_(d)(z,f)is a differential polynomial in f of degree d≤n−1,p′js andα′js are non-zero constants.We obtain the expressions of meromorphic solutions of the above equations under some restrictions onα′js.Some examples are given to illustrate the possibilities of our results.
基金Supported by National Science Foundation of China(11971027,12171497)。
文摘This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.
文摘In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensate. Based on the bifurcation theory, we proved the existence of solitary and periodic solutions. The methods we take are the trial equation method and the complete discrimination system for polynomial method. Therefore, we obtain the exact chirped solutions, which are more abundant in type and quantity than the existing results, so that the equation has more profound physical significance. These two methods are rigorously mathematical derivation and calculations, rather than based on certain conditional assumptions. In addition, we give some specific parameters to graphing the motion of the solutions, which helps to understand the propagation of nonlinear waves in fiber optic systems.
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
文摘In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belongs to the Sobolev space H'(R)for some s>2.In addition,we obtain the weak formulation of this equation and prove the existence of both single peakon solution and a multi-peakon dynamic system.
基金Supported by NSFC (No.12031006)Fundamental Research Funds for the Central Universities of China。
文摘We study the Cauchy problem of the Kolmogorov-Fokker-Planck equations and show that the solution enjoys an analytic smoothing effect with L?initial datum for positive time.
基金Supported by the National Natural Science Foundation of China(12201368,62376252)Key Project of Natural Science Foundation of Zhejiang Province(LZ22F030003)Zhejiang Province Leading Geese Plan(2024C02G1123882,2024C01SA100795).
文摘With the urgent need to resolve complex behaviors in nonlinear evolution equations,this study makes a contribution by establishing the local existence of solutions for Cauchy problems associated with equations of mixed types.Our primary contribution is the establishment of solution existence,illuminating the dynamics of these complex equations.To tackle this challenging problem,we construct an approximate solution sequence and apply the contraction mapping principle to rigorously prove local solution existence.Our results significantly advance the understanding of nonlinear evolution equations of mixed types.Furthermore,they provide a versatile,powerful approach for tackling analogous challenges across physics,engineering,and applied mathematics,making this work a valuable reference for researchers in these fields.
基金partially supported by RGC(No.17307420)supported by NSFC(No.12471077)。
文摘In order to find closed form solutions of nonintegrable nonlinear ordinary differential equations,numerous tricks have been proposed.The goal of this short review is to explain how a theorem of Eremenko on meromorphic solutions of some nonlinear ODEs together with some classical,19th-century results,can be turned into algorithms(thus avoiding ad hoc assumptions)which provide all(as opposed to some)solutions in a precise class.To illustrate these methods,we present some new such exact solutions,physically relevant.
基金Supported by the Research Project Supported of Shanxi Scholarship Council of China(No.2021-029)Shanxi Provincial International Cooperation Base and Platform Project(202104041101019)Shanxi Province Natural Science Research(202203021211129)。
文摘In this paper,we construct a new class of efficient and high-order schemes for the Cahn-Hilliard-Navier-Stokes equations with periodic boundary conditions.These schemes are based on two types of scalar auxiliary variable approaches.By using a new pressure correction method,the accuracy of the pressure has been greatly improved.Furthermore,one only needs to solve a series of fully decoupled linear equations with constant coefficients at each time step.In addition,we prove the unconditional energy stability of the schemes,rigorously.Finally,plenty of numerical simulations are carried out to verify the convergence rates,stability,and effectiveness of the proposed schemes numerically.
基金Partially supported by Postgraduate Research and Practice Innovation Program of Jiangsu Province(Nos.KYCX22-2211,KYCX22-2205)。
文摘In this paper,we prove the transportation cost-information inequalities on the space of continuous paths with respect to the L~2-metric and the uniform metric for the law of the mild solution to the stochastic heat equation defined on[0,T]×[0,1]driven by double-parameter fractional noise.
文摘In this paper,we study the following pseudo-relativistic Hartree equation i∂_(t)Ψ-(|x|^(-1)*|Ψ|^(2))Ψwith(t,x)∈R×R^(3)We mainly focus on the normalized ground state solitary waves of the formΨ(t,x)=e^(itμ)φm(x)with||φm||_(2)^(2)=N.We investigate limit behaviors of energy and minimizer of the corresponding frinetional of this equationas m→+∞.We prove that m_(k)^(-3/2)φm_(k)→φ∞(x)in H^(-1/2(R^(3)))by energy method and lim_(m→+∞)+m^(-1)e(N)=e(N),whereφ_(m)(β∞)is a minimizer of e(N)(e(N).
文摘Let a_(1),a_(2),a_(3)be nonzero integers with gcd(a_(1),a_(2),a_(3))=1,and let k be any positive integer,K=max[3,|a_(1)|,|a_(2)|,|a_(3)|,k].Suppose that l_(1),l_(2),l_(3)are integers each coprime to k.Suppose further that b is any integer satisfying some necessary congruent conditions.The solvability of linear equation a_(1)p_(1)+a_(2)p_(2)+a_(3)p_(3)=b(p_(j)=l_(j)(mod k),1≤j≤3)with prime variables pi,p_(2),ps is investigated.It is proved that if ai,a_(2),a_(3)are all positive,then the above equation is solvable whenever b≥K^(25);if a,a_(2),a_(3)are not all of the same sign,then the above equation has a solution p_(1),p_(2),p_(3)satisfying max(p_(1),p_(2),p_(3))≤3|b|+K^(25).