The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is increasing,affecting over one-third of the global population and contributing to significant morbidity and mortality.Diagnosing MAFLD,esp...The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is increasing,affecting over one-third of the global population and contributing to significant morbidity and mortality.Diagnosing MAFLD,especially with advan-ced fibrosis,remains challenging due to the limitations of liver biopsy,the current gold standard.Non-invasive tests are crucial for early detection and management.Among these,the fibrosis-4 index(Fib-4)is widely recommended as a first-line test for screening for liver fibrosis.Advanced imaging techniques,including ultrasound-based elastography and magnetic resonance elastography,offer high accuracy but are limited by cost and availability.Combining biomarkers,such as in the enhanced liver fibrosis score and FibroScan-AST score,enhances diagnostic precision and is recommended to further stratify patients who are considered to be intermediate or high risk from the Fib-4 score.We believe that the future lies in the combined use of biomarkers to improve diagnostic accuracy.展开更多
Advances in recent years in the understanding of, and the genetic diagnosis of hereditary hemochromatosis (HH) have changed the approach to iron overload he-reditary diseases. The ability to use a radiologic tool (MRI...Advances in recent years in the understanding of, and the genetic diagnosis of hereditary hemochromatosis (HH) have changed the approach to iron overload he-reditary diseases. The ability to use a radiologic tool (MRI) that accurately provides liver iron concentration determination, and the presence of non-invasive sero-logic markers for fibrosis prediction (ser um ferritin, platelet count, transaminases, etc), have diminished the need for liver biopsy for diagnosis and prognosis of this disease. Consequently, the role of liv er biopsy in iron metabolism disorders is changing. Furthermore, the irruption of transient elastography to assess liver stiffness, and, more recently, the ability to determine liver f ibrosis by means of MRI elastography will change this role even more, with a potential drastic decline in hepatic biopsies in years to come. This review will provide a brief summary of the different non-invasive methods available nowadays for diagnosis and prognosis in HH, and point out potential new techniques that could come about in the next years for fibrosis prediction, thus avoiding the need for liver biopsy in a greater number of patients. It is possible that liver biopsy will remain useful for the diagnosis of associated diseases, where other non-invasive means are not po-ssible, or for those rare cases displaying discrepancies between radiological and biochemical markers.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
BACKGROUND Despite the developments in the field of kidney transplantation,the already existing diagnostic techniques for patient monitoring are considered insufficient.Protein biomarkers that can be derived from mode...BACKGROUND Despite the developments in the field of kidney transplantation,the already existing diagnostic techniques for patient monitoring are considered insufficient.Protein biomarkers that can be derived from modern approaches of proteomic analysis of liquid biopsies(serum,urine)represent a promising innovation in the monitoring of kidney transplant recipients.AIM To investigate the diagnostic utility of protein biomarkers derived from proteomics approaches in renal allograft assessment.METHODS A systematic review was conducted in accordance with PRISMA guidelines,based on research results from the PubMed and Scopus databases.The primary focus was on evaluating the role of biomarkers in the non-invasive diagnosis of transplant-related com-plications.Eligibility criteria included protein biomarkers and urine and blood samples,while exclusion criteria were language other than English and the use of low resolution and sensitivity methods.The selected research articles,were categorized based on the biological sample,condition and methodology and the significantly and reproducibly differentiated proteins were manually selected and extracted.Functional and network analysis of the selected proteins was performed.RESULTS In 17 included studies,58 proteins were studied,with the cytokine CXCL10 being the most investigated.Biological pathways related to immune response and fibrosis have shown to be enriched.Applications of biomarkers for the assessment of renal damage as well as the prediction of short-term and long-term function of the graft were reported.Overall,all studies have shown satisfactory diagnostic accuracy of proteins alone or in combination with conventional methods,as far as renal graft assessment is concerned.CONCLUSION Our review suggests that protein biomarkers,evaluated in specific biological fluids,can make a significant contribution to the timely,valid and non-invasive assessment of kidney graft.展开更多
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
Gastric cancer(GC),a multifaceted and highly aggressive malignancy,represents challenging healthcare burdens globally,with a high incidence and mortality rate.Although endoscopy,combined with histological examination,...Gastric cancer(GC),a multifaceted and highly aggressive malignancy,represents challenging healthcare burdens globally,with a high incidence and mortality rate.Although endoscopy,combined with histological examination,is the gold stan-dard for GC diagnosis,its high cost,invasiveness,and specialized requirements hinder widespread use for screening.With the emergence of innovative techno-logies such as advanced imaging,liquid biopsy,and breath tests,the landscape of GC diagnosis is poised for radical transformation,becoming more accessible,less invasive,and more efficient.As the non-invasive diagnostic techniques continue to advance and undergo rigorous clinical validation,they hold the promise of sig-nificantly impacting patient outcomes,ultimately leading to better treatment results and improved quality of life for patients with GC.展开更多
Flip-flow screens offer unique advantages in grading fine-grained materials.To address inaccuracies caused by sensor vibra-tions in traditional contact measurement methods,we constructed a non-invasive measurement sys...Flip-flow screens offer unique advantages in grading fine-grained materials.To address inaccuracies caused by sensor vibra-tions in traditional contact measurement methods,we constructed a non-invasive measurement system based on electrical and optical sig-nals.A trajectory tracking algorithm for the screen-body was developed to visually measure the kinematics.Employing the principle oflaser reflection for distance measurement,optical techniques were performed to capture the kinematic information of the screen-plate.Ad-ditionally,by using Wi-Fi and Bluetooth transmission of electrical signals,tracer particle tracking technology was implemented to elec-trically measure the kinematic information of mineral particles.Consequently,intelligent fusion and perception of the kinematic informa-tion for the screen-body,screen-plate,and particles in the screening system have been achieved.展开更多
RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa...RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.展开更多
Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for ...Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for efficiently predicting the frequency distribution of wind speeds at a site. Hourly wind speed and direction data were collected from the National Aeronautics and Space Administration (NASA) website for the period 2013 to 2023. MATLAB software was used to calculate the distribution parameters using the graphical method and to plot the corresponding curves, while WRPLOTView software was used to construct the wind rose. The average wind speed obtained is 3.33 m/s and can reach up to 5.71 m/s at a height of 100 meters. The wind energy is estimated to be 1315.30 kWh/m2 at a height of 100 meters. The wind rose indicates the prevailing winds (ranging from 3.60 m/s to 5.70 m/s) in the northeast-east direction.展开更多
BACKGROUND Internet gaming disorder(IGD)is a growing concern among adolescents and adults,necessitating effective treatment strategies beyond pharmacological interventions.AIM To evaluated the effectiveness of non-inv...BACKGROUND Internet gaming disorder(IGD)is a growing concern among adolescents and adults,necessitating effective treatment strategies beyond pharmacological interventions.AIM To evaluated the effectiveness of non-invasive interventions for treating IGD among adolescents and adults.METHODS A total of 11 randomized controlled trials published between 2020 and 2025 were included in this meta-analysis,encompassing 1208 participants from diverse geographic and cultural contexts.The interventions examined included cognitive behavioral therapy(CBT),internet-based CBT,neurofeedback,virtual reality therapy,abstinence-based programs,and school-based prevention.The primary outcomes assessed were reductions in gaming time and IGD severity.Secondary outcomes included improvements in mood,anxiety,and psychosocial functioning(e.g.,stronger peer relationships,better academic or work performance,and healthier daily-life role fulfillment).RESULTS The pooled standardized mean difference for IGD symptom reduction significantly favored non-invasive interventions(Hedges’g=0.56,95%CI:0.38-0.74,P<0.001),with moderate heterogeneity observed(I2=47%).Subgroup analyses indicated that CBT-based programs,both in-person and online,yielded the strongest effects,particularly when caregiver involvement or self-monitoring was incorporated.Funnel plot asymmetry was minimal,suggesting a low risk of publication bias.CONCLUSION These findings support the efficacy of scalable,low-risk non-invasive interventions as first-line treatment options for IGD,particularly in youth populations.Future studies should prioritize investigating long-term outcomes,comparing the effectiveness of different non-invasive modalities,and developing culturally adaptive delivery methods.展开更多
In this article,we comment on the article by Peta et al.This study evaluates the diagnostic performance of FibroTest-Actitest,transient elastography,and the fibrosis-4 index against a histological reference.Using the ...In this article,we comment on the article by Peta et al.This study evaluates the diagnostic performance of FibroTest-Actitest,transient elastography,and the fibrosis-4 index against a histological reference.Using the Obuchowski measure,the authors demonstrate that FibroTest and vibration-controlled transient elastography outperform the fibrosis-4 index in detecting fibrosis.Additionally,Actitest offers superior estimation of inflammatory activity compared to conventional biomarkers.Assessing liver fibrosis is crucial for managing autoimmune hepatitis(AIH),yet reliance on invasive liver biopsy remains higher than in other liver diseases.This is partly due to more complex diagnostic criteria for AIH,the lack of standardized scoring for non-invasive testing,and the presence of inflammation,which can lead to falsely elevated results with non-invasive tests.A Bayesian latent class model further supports the reliability of these non-invasive tests,highlighting their potential to complement biopsy,particularly for longterm disease monitoring.These findings underscore the importance of noninvasive diagnostics in optimizing AIH management.展开更多
Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to...Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to the compressive strength of the core sample with a diameter of 100mm and a height-to-diameter ratio of 1:1.By comparing the measured strength values,the relationship between the measured values under different strength measurement methods was analyzed.Design/methodology/approach–A comparative test of the core drilling method and the rebound method was conducted on the side walls of tunnel linings in some under-construction railways to study the feasibility of the rebound method in engineering quality supervision and inspection.Findings–Tests showed that the rebound strength was positively correlated with the core drill strength.The core drill test strength was significantly higher than the rebound test strength,and the strength still increased after 56 days of age.The rebound method is suitable for the general survey of concrete strength during the construction process and is not suitable for direct supervision and inspection.Originality/value–By studying the correlation of test strength of tunnel lining concrete using two methods,the differences in test results of different methods are proposed to provide a reference for the test and evaluation of tunnel lining strength in railway engineering.展开更多
Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un...Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
The feasibility of using a problem-dependent method to solve systems of second order ODEs is corroborated by an eigen-based theory and a methodology to develop such a numerical method is constructed.The key steps of t...The feasibility of using a problem-dependent method to solve systems of second order ODEs is corroborated by an eigen-based theory and a methodology to develop such a numerical method is constructed.The key steps of this methodology are to decouple a system of ODEs of second order into a set of uncoupled ODEs of second order;next,an eigen-dependent method is proposed to approximate the solution of each uncoupled ODE of second order.It is vital to transform all eigen-dependent methods to a problem-dependent method to bypass an Eigen analysis.The development of an eigen-dependent method plays a key role in this methodology so that slow eigenmodes can be accurately integrated while there is no instability or excessive amplitude growth in fast eigenmodes.This can explain why a problem-dependent method can simultaneously combine the explicitness of each step and A-stability.Consequently,huge computational efforts can be saved for solving nonlinear stiff problems.A new family of problem-dependent methods is developed in this work so that the feasibility of the proposed methodology can be affirmed.It has almost the same performance as that of the HHT-αmethod.However,it can save more than 99.5%of CPU demand in approximating a solution for a system of 1000 nonlinear second order ODEs.展开更多
Due to their high water content,stimulus responsiveness,and biocompatibility,hydrogels,which are functional materials with a three-dimensional network structure,are widely applied in fields such as biomedicine,environ...Due to their high water content,stimulus responsiveness,and biocompatibility,hydrogels,which are functional materials with a three-dimensional network structure,are widely applied in fields such as biomedicine,environmental monitoring,and flexible electronics.This paper provides a systematic review of hydrogel charac-terization methods and their applications,focusing on primary evaluation techniques for physical properties(e.g.,mechanical strength,swelling behavior,and pore structure),chemical properties(e.g.,composition,crosslink density,and degradation behavior),biocompatibility,and functional properties(e.g.,drug release,environmental stimulus response,and conductivity).It analyzes the challenges currently faced by characterization methods,such as a lack of standardization,difficulties in dynamic monitoring,an insufficient micro-macro correlation,and poor adaptability to complex environments.It proposes solutions,such as a hierarchical standardization system,in situ imaging technology,cross-scale characterization,and biomimetic testing platforms.Looking ahead,hydrogel characterization techniques will evolve toward intelligent,real-time,multimodal coupling and standardized approaches.These techniques will provide superior technical support for precision medicine,environmental restoration,and flexible electronics.They will also offer systematic methodological guidance for the performance optimization and practical application of hydrogel materials.展开更多
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate...Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.展开更多
In the context of digitalization,course resources exhibit multimodal characteristics,covering various forms such as text,images,and videos.Course knowledge and learning resources are becoming increasingly diverse,prov...In the context of digitalization,course resources exhibit multimodal characteristics,covering various forms such as text,images,and videos.Course knowledge and learning resources are becoming increasingly diverse,providing favorable conditions for students’in-depth and efficient learning.Against this backdrop,how to scientifically apply emerging technologies to automatically collect,process,and integrate digital learning resources such as voices,videos,and courseware texts,and better innovate the organization and presentation forms of course knowledge has become an important development direction for“artificial intelligence+education.”This article elaborates on the elements and characteristics of knowledge graphs,analyzes the construction steps of knowledge graphs,and explores the construction methods of multimodal course knowledge graphs from aspects such as dataset collection,course knowledge ontology identification,knowledge discovery,and association,providing references for the intelligent application of online open courses.展开更多
In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At prese...In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At present, research on residual stress at home and abroad mainly focuses on the optimization of traditional detection technology, stress control of manufacturing process and service performance evaluation, among which research on residual stress detection methods mainly focuses on the improvement of the accuracy, sensitivity, reliability and other performance of existing detection methods, but it still faces many challenges such as extremely small detection range, low efficiency, large error and limited application range.展开更多
文摘The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is increasing,affecting over one-third of the global population and contributing to significant morbidity and mortality.Diagnosing MAFLD,especially with advan-ced fibrosis,remains challenging due to the limitations of liver biopsy,the current gold standard.Non-invasive tests are crucial for early detection and management.Among these,the fibrosis-4 index(Fib-4)is widely recommended as a first-line test for screening for liver fibrosis.Advanced imaging techniques,including ultrasound-based elastography and magnetic resonance elastography,offer high accuracy but are limited by cost and availability.Combining biomarkers,such as in the enhanced liver fibrosis score and FibroScan-AST score,enhances diagnostic precision and is recommended to further stratify patients who are considered to be intermediate or high risk from the Fib-4 score.We believe that the future lies in the combined use of biomarkers to improve diagnostic accuracy.
文摘Advances in recent years in the understanding of, and the genetic diagnosis of hereditary hemochromatosis (HH) have changed the approach to iron overload he-reditary diseases. The ability to use a radiologic tool (MRI) that accurately provides liver iron concentration determination, and the presence of non-invasive sero-logic markers for fibrosis prediction (ser um ferritin, platelet count, transaminases, etc), have diminished the need for liver biopsy for diagnosis and prognosis of this disease. Consequently, the role of liv er biopsy in iron metabolism disorders is changing. Furthermore, the irruption of transient elastography to assess liver stiffness, and, more recently, the ability to determine liver f ibrosis by means of MRI elastography will change this role even more, with a potential drastic decline in hepatic biopsies in years to come. This review will provide a brief summary of the different non-invasive methods available nowadays for diagnosis and prognosis in HH, and point out potential new techniques that could come about in the next years for fibrosis prediction, thus avoiding the need for liver biopsy in a greater number of patients. It is possible that liver biopsy will remain useful for the diagnosis of associated diseases, where other non-invasive means are not po-ssible, or for those rare cases displaying discrepancies between radiological and biochemical markers.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
文摘BACKGROUND Despite the developments in the field of kidney transplantation,the already existing diagnostic techniques for patient monitoring are considered insufficient.Protein biomarkers that can be derived from modern approaches of proteomic analysis of liquid biopsies(serum,urine)represent a promising innovation in the monitoring of kidney transplant recipients.AIM To investigate the diagnostic utility of protein biomarkers derived from proteomics approaches in renal allograft assessment.METHODS A systematic review was conducted in accordance with PRISMA guidelines,based on research results from the PubMed and Scopus databases.The primary focus was on evaluating the role of biomarkers in the non-invasive diagnosis of transplant-related com-plications.Eligibility criteria included protein biomarkers and urine and blood samples,while exclusion criteria were language other than English and the use of low resolution and sensitivity methods.The selected research articles,were categorized based on the biological sample,condition and methodology and the significantly and reproducibly differentiated proteins were manually selected and extracted.Functional and network analysis of the selected proteins was performed.RESULTS In 17 included studies,58 proteins were studied,with the cytokine CXCL10 being the most investigated.Biological pathways related to immune response and fibrosis have shown to be enriched.Applications of biomarkers for the assessment of renal damage as well as the prediction of short-term and long-term function of the graft were reported.Overall,all studies have shown satisfactory diagnostic accuracy of proteins alone or in combination with conventional methods,as far as renal graft assessment is concerned.CONCLUSION Our review suggests that protein biomarkers,evaluated in specific biological fluids,can make a significant contribution to the timely,valid and non-invasive assessment of kidney graft.
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
基金Supported by National Natural Science Foundation of China,No.82300451Research Foundation of Wuhan Union Hospital,No.2022xhyn050.
文摘Gastric cancer(GC),a multifaceted and highly aggressive malignancy,represents challenging healthcare burdens globally,with a high incidence and mortality rate.Although endoscopy,combined with histological examination,is the gold stan-dard for GC diagnosis,its high cost,invasiveness,and specialized requirements hinder widespread use for screening.With the emergence of innovative techno-logies such as advanced imaging,liquid biopsy,and breath tests,the landscape of GC diagnosis is poised for radical transformation,becoming more accessible,less invasive,and more efficient.As the non-invasive diagnostic techniques continue to advance and undergo rigorous clinical validation,they hold the promise of sig-nificantly impacting patient outcomes,ultimately leading to better treatment results and improved quality of life for patients with GC.
基金financially supported by ChinaNational Funds for Distinguished Young Scientists(No.52125403)National Natural Science Foundation of China(Nos.52261135540 and 52404303)Science and Tech-nology Plan Special Fund Project of Jiangsu Province,China(No.BZ2024046)。
文摘Flip-flow screens offer unique advantages in grading fine-grained materials.To address inaccuracies caused by sensor vibra-tions in traditional contact measurement methods,we constructed a non-invasive measurement system based on electrical and optical sig-nals.A trajectory tracking algorithm for the screen-body was developed to visually measure the kinematics.Employing the principle oflaser reflection for distance measurement,optical techniques were performed to capture the kinematic information of the screen-plate.Ad-ditionally,by using Wi-Fi and Bluetooth transmission of electrical signals,tracer particle tracking technology was implemented to elec-trically measure the kinematic information of mineral particles.Consequently,intelligent fusion and perception of the kinematic informa-tion for the screen-body,screen-plate,and particles in the screening system have been achieved.
基金supported by grants from the National Science Foundation of China(Grant Nos.12375038 and 12075171 to ZJT,and 12205223 to YLT).
文摘RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.
文摘Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for efficiently predicting the frequency distribution of wind speeds at a site. Hourly wind speed and direction data were collected from the National Aeronautics and Space Administration (NASA) website for the period 2013 to 2023. MATLAB software was used to calculate the distribution parameters using the graphical method and to plot the corresponding curves, while WRPLOTView software was used to construct the wind rose. The average wind speed obtained is 3.33 m/s and can reach up to 5.71 m/s at a height of 100 meters. The wind energy is estimated to be 1315.30 kWh/m2 at a height of 100 meters. The wind rose indicates the prevailing winds (ranging from 3.60 m/s to 5.70 m/s) in the northeast-east direction.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)Funded by the Ministry of Education,No.NRF-RS-2023-00237287.
文摘BACKGROUND Internet gaming disorder(IGD)is a growing concern among adolescents and adults,necessitating effective treatment strategies beyond pharmacological interventions.AIM To evaluated the effectiveness of non-invasive interventions for treating IGD among adolescents and adults.METHODS A total of 11 randomized controlled trials published between 2020 and 2025 were included in this meta-analysis,encompassing 1208 participants from diverse geographic and cultural contexts.The interventions examined included cognitive behavioral therapy(CBT),internet-based CBT,neurofeedback,virtual reality therapy,abstinence-based programs,and school-based prevention.The primary outcomes assessed were reductions in gaming time and IGD severity.Secondary outcomes included improvements in mood,anxiety,and psychosocial functioning(e.g.,stronger peer relationships,better academic or work performance,and healthier daily-life role fulfillment).RESULTS The pooled standardized mean difference for IGD symptom reduction significantly favored non-invasive interventions(Hedges’g=0.56,95%CI:0.38-0.74,P<0.001),with moderate heterogeneity observed(I2=47%).Subgroup analyses indicated that CBT-based programs,both in-person and online,yielded the strongest effects,particularly when caregiver involvement or self-monitoring was incorporated.Funnel plot asymmetry was minimal,suggesting a low risk of publication bias.CONCLUSION These findings support the efficacy of scalable,low-risk non-invasive interventions as first-line treatment options for IGD,particularly in youth populations.Future studies should prioritize investigating long-term outcomes,comparing the effectiveness of different non-invasive modalities,and developing culturally adaptive delivery methods.
文摘In this article,we comment on the article by Peta et al.This study evaluates the diagnostic performance of FibroTest-Actitest,transient elastography,and the fibrosis-4 index against a histological reference.Using the Obuchowski measure,the authors demonstrate that FibroTest and vibration-controlled transient elastography outperform the fibrosis-4 index in detecting fibrosis.Additionally,Actitest offers superior estimation of inflammatory activity compared to conventional biomarkers.Assessing liver fibrosis is crucial for managing autoimmune hepatitis(AIH),yet reliance on invasive liver biopsy remains higher than in other liver diseases.This is partly due to more complex diagnostic criteria for AIH,the lack of standardized scoring for non-invasive testing,and the presence of inflammation,which can lead to falsely elevated results with non-invasive tests.A Bayesian latent class model further supports the reliability of these non-invasive tests,highlighting their potential to complement biopsy,particularly for longterm disease monitoring.These findings underscore the importance of noninvasive diagnostics in optimizing AIH management.
文摘Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to the compressive strength of the core sample with a diameter of 100mm and a height-to-diameter ratio of 1:1.By comparing the measured strength values,the relationship between the measured values under different strength measurement methods was analyzed.Design/methodology/approach–A comparative test of the core drilling method and the rebound method was conducted on the side walls of tunnel linings in some under-construction railways to study the feasibility of the rebound method in engineering quality supervision and inspection.Findings–Tests showed that the rebound strength was positively correlated with the core drill strength.The core drill test strength was significantly higher than the rebound test strength,and the strength still increased after 56 days of age.The rebound method is suitable for the general survey of concrete strength during the construction process and is not suitable for direct supervision and inspection.Originality/value–By studying the correlation of test strength of tunnel lining concrete using two methods,the differences in test results of different methods are proposed to provide a reference for the test and evaluation of tunnel lining strength in railway engineering.
基金supported by the National Natural Science Foundation of China(No.92252201)the Fundamental Research Funds for the Central Universitiesthe Academic Excellence Foundation of Beihang University(BUAA)for PhD Students。
文摘Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
文摘The feasibility of using a problem-dependent method to solve systems of second order ODEs is corroborated by an eigen-based theory and a methodology to develop such a numerical method is constructed.The key steps of this methodology are to decouple a system of ODEs of second order into a set of uncoupled ODEs of second order;next,an eigen-dependent method is proposed to approximate the solution of each uncoupled ODE of second order.It is vital to transform all eigen-dependent methods to a problem-dependent method to bypass an Eigen analysis.The development of an eigen-dependent method plays a key role in this methodology so that slow eigenmodes can be accurately integrated while there is no instability or excessive amplitude growth in fast eigenmodes.This can explain why a problem-dependent method can simultaneously combine the explicitness of each step and A-stability.Consequently,huge computational efforts can be saved for solving nonlinear stiff problems.A new family of problem-dependent methods is developed in this work so that the feasibility of the proposed methodology can be affirmed.It has almost the same performance as that of the HHT-αmethod.However,it can save more than 99.5%of CPU demand in approximating a solution for a system of 1000 nonlinear second order ODEs.
文摘Due to their high water content,stimulus responsiveness,and biocompatibility,hydrogels,which are functional materials with a three-dimensional network structure,are widely applied in fields such as biomedicine,environmental monitoring,and flexible electronics.This paper provides a systematic review of hydrogel charac-terization methods and their applications,focusing on primary evaluation techniques for physical properties(e.g.,mechanical strength,swelling behavior,and pore structure),chemical properties(e.g.,composition,crosslink density,and degradation behavior),biocompatibility,and functional properties(e.g.,drug release,environmental stimulus response,and conductivity).It analyzes the challenges currently faced by characterization methods,such as a lack of standardization,difficulties in dynamic monitoring,an insufficient micro-macro correlation,and poor adaptability to complex environments.It proposes solutions,such as a hierarchical standardization system,in situ imaging technology,cross-scale characterization,and biomimetic testing platforms.Looking ahead,hydrogel characterization techniques will evolve toward intelligent,real-time,multimodal coupling and standardized approaches.These techniques will provide superior technical support for precision medicine,environmental restoration,and flexible electronics.They will also offer systematic methodological guidance for the performance optimization and practical application of hydrogel materials.
基金the financial support provided by MHRD,Govt.of IndiaCoal India Limited for providing financial assistance for the research(Project No.CIL/R&D/01/73/2021)the partial financial support provided by the Ministry of Education,Government of India,under SPARC project(Project No.P1207)。
文摘Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.
基金University-level Scientific Research Project in Natural Sciences“Research on the Retrieval Method of Multimodal First-Class Course Teaching Content Based on Knowledge Graph Collaboration”(GKY-2024KYYBK-31)。
文摘In the context of digitalization,course resources exhibit multimodal characteristics,covering various forms such as text,images,and videos.Course knowledge and learning resources are becoming increasingly diverse,providing favorable conditions for students’in-depth and efficient learning.Against this backdrop,how to scientifically apply emerging technologies to automatically collect,process,and integrate digital learning resources such as voices,videos,and courseware texts,and better innovate the organization and presentation forms of course knowledge has become an important development direction for“artificial intelligence+education.”This article elaborates on the elements and characteristics of knowledge graphs,analyzes the construction steps of knowledge graphs,and explores the construction methods of multimodal course knowledge graphs from aspects such as dataset collection,course knowledge ontology identification,knowledge discovery,and association,providing references for the intelligent application of online open courses.
文摘In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At present, research on residual stress at home and abroad mainly focuses on the optimization of traditional detection technology, stress control of manufacturing process and service performance evaluation, among which research on residual stress detection methods mainly focuses on the improvement of the accuracy, sensitivity, reliability and other performance of existing detection methods, but it still faces many challenges such as extremely small detection range, low efficiency, large error and limited application range.