For achieving the scientific mission of long pulse and high performance operation,experimental advanced superconducting tokamak(EAST) applies fully superconducting magnet technology and is equiped with high power au...For achieving the scientific mission of long pulse and high performance operation,experimental advanced superconducting tokamak(EAST) applies fully superconducting magnet technology and is equiped with high power auxiliary heating system.Besides RF(Radio Frequency) wave heating,neutral beam injection(NBI) is an effective heating and current drive method in fusion research.NBCD(Neutral Beam Current Drive) as a viable non-inductive current drive source plays an important role in quasi-steady state operating scenario for tokamak.The non-inductive current driven scenario in EAST only by NBI is predicted using the TSC/NUBEAM code.At the condition of low plasma current and moderate plasma density,neutral beam injection heats the plasma effectively and NBCD plus bootstrap current accounts for a large proportion among the total plasma current for the flattop time.展开更多
Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is ...Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.展开更多
The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly...The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly monsoon in summer induces a clockwise circulation in the Beibu Gulf, and the density gradient induces a counter-clockwise one; but the density current is more intense than the wind- driven one in summer, espeially in surface layer. In addition, the northeasterly monsoon in winter in- duces a counter-clockwise circulation. The simulated results don't support the traditional condusion that there is a clockwise circulation in the Beibu Gulf in summer and a counter-clockwise one in winter, but support the statement that a counterclockwise circulation exists in the Beibu Gulf all year round.展开更多
Both start-up and sustainment of plasma were successfully achieved by fully non- inductive current drive using microwave with a frequency of 8.2 GHz. Plasmas current of 15 kA was implemented for 1 s. Magnetic surface ...Both start-up and sustainment of plasma were successfully achieved by fully non- inductive current drive using microwave with a frequency of 8.2 GHz. Plasmas current of 15 kA was implemented for 1 s. Magnetic surface reconstruction exhibited a plasma shape with an aspect ratio of below 1.5. The plasma current was dependent significantly on the launched microwave power and vertical magnetic field, while not affected by the mode of launched wave and the toroidal refractive index. Hard X-ray (HXR) emitted from energetic electrons accelerated by the microwave was observed, and the discharge with a plasma current over 4 kA followed the same trend as the number of photons of 10 keV to 12 keV. This suggests that the plasma current may be driven by energetic electrons. Based on the experimental conditions, alternative explanations of how the plasma current could be driven are discussed.展开更多
Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based...Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.展开更多
The measurement theorem of fiber optically driven instrument for high-voltage line current is presented. The PLL voltage-frequency-narrow pulse principle and its micro-consumption mechanism are proposed, followed by a...The measurement theorem of fiber optically driven instrument for high-voltage line current is presented. The PLL voltage-frequency-narrow pulse principle and its micro-consumption mechanism are proposed, followed by analysis on the two main factors affecting PLL measurement precision. A software design scheme using 80C196KB micro-controller is introduced. The experiment result is satisfactory.展开更多
The relation between domain wall motion and intensity of driven current is examined in a phenomenological theory where the kinetic energy is expanded as a series of polynomial function of current density just as the L...The relation between domain wall motion and intensity of driven current is examined in a phenomenological theory where the kinetic energy is expanded as a series of polynomial function of current density just as the Landau phase transition theory. The dependency of velocity on current density is square root which degenerates into linear if the current is much higher than the critical value. The theory result is consistent with several previous experiments and also can explain the change of critical current in the presence of temperature. The role of temperature playing in the dynamics of domain wall motion is also discussed. The phase transition theory in terms of current density is employed to explain the critical behavior of domain wall motion.展开更多
With ificreasing demand for large cylindrical forgings, a new technology--electroslag remelting (ESR) for direct manufacture of hollow ingots rather than solid ingots has been developed. The main features of the pro...With ificreasing demand for large cylindrical forgings, a new technology--electroslag remelting (ESR) for direct manufacture of hollow ingots rather than solid ingots has been developed. The main features of the process include a T-shaped current supplying mould (CSM), double power supply, an ingot withdrawing system, a metal level automatic control system based on a level sensor using the electromagnetic eddy current method, and the exchange of a consumable multi-electrode. ANSYS software was used to calculate the fluid flow and heat transfer in the slag bath 1 and metal pool of this ESR hollow ingot process with its T-shaped CSM. The mathematmal model was Verified by measuring the geometry of the liquid metal pool as observed in the macrostructure of 4650 mm (external diameter)/ 4450 mm (internal diameter) hollow ingots by sulphur print method: the. observed shape and depth of the s!ag bath were consistent with the simulated results. Simulation of the ESR process can improve understanding of the process and allow better operating parameters to be selected.展开更多
Transport of a Brownian particle moving in a symmetric potential is investigated in the presence of an asymmetric unbiased external force. The viscous medium is alternately in contact with the two heat reservoirs. We ...Transport of a Brownian particle moving in a symmetric potential is investigated in the presence of an asymmetric unbiased external force. The viscous medium is alternately in contact with the two heat reservoirs. We present the analytical expression of the net current at the quasi-steady state limit. It is found that the competition of the temporal asymmetric parameter of the driving force with the temperature difference leads to current reversals. The competition between the two opposite driving factors is a necessary but not a sufficient condition for current reversals.展开更多
基金supported by National Natural Science Foundation of China(Nos.11175211,11247302)
文摘For achieving the scientific mission of long pulse and high performance operation,experimental advanced superconducting tokamak(EAST) applies fully superconducting magnet technology and is equiped with high power auxiliary heating system.Besides RF(Radio Frequency) wave heating,neutral beam injection(NBI) is an effective heating and current drive method in fusion research.NBCD(Neutral Beam Current Drive) as a viable non-inductive current drive source plays an important role in quasi-steady state operating scenario for tokamak.The non-inductive current driven scenario in EAST only by NBI is predicted using the TSC/NUBEAM code.At the condition of low plasma current and moderate plasma density,neutral beam injection heats the plasma effectively and NBCD plus bootstrap current accounts for a large proportion among the total plasma current for the flattop time.
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFE03070000 and 2022YFE03070003)the National Natural Science Foundation of China(Grant Nos.12375220 and 12075114)+3 种基金the Hunan Provincial Natural Science Foundation(Grant No.2021JJ30569)the Doctoral Initiation Fund Project of University of South China(Grant No.190XQD114)the Hunan Nuclear Fusion International Science and Technology Innovation Cooperation Base(Grant No.2018WK4009)the Hengyang Key Laboratory of Magnetic Confinement Nuclear Fusion Research(Grant No.2018KJ108)。
文摘Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.
基金This study was supported by the Youth Ocean Sience Funds of State Oceanic Administration under contract No. 97301.
文摘The Casulli's difference scheme was introduced into the three-dimensional ocean model in the present paper, and the wind-driven current and thermohaline current were simulated. The results show that, southwesterly monsoon in summer induces a clockwise circulation in the Beibu Gulf, and the density gradient induces a counter-clockwise one; but the density current is more intense than the wind- driven one in summer, espeially in surface layer. In addition, the northeasterly monsoon in winter in- duces a counter-clockwise circulation. The simulated results don't support the traditional condusion that there is a clockwise circulation in the Beibu Gulf in summer and a counter-clockwise one in winter, but support the statement that a counterclockwise circulation exists in the Beibu Gulf all year round.
文摘Both start-up and sustainment of plasma were successfully achieved by fully non- inductive current drive using microwave with a frequency of 8.2 GHz. Plasmas current of 15 kA was implemented for 1 s. Magnetic surface reconstruction exhibited a plasma shape with an aspect ratio of below 1.5. The plasma current was dependent significantly on the launched microwave power and vertical magnetic field, while not affected by the mode of launched wave and the toroidal refractive index. Hard X-ray (HXR) emitted from energetic electrons accelerated by the microwave was observed, and the discharge with a plasma current over 4 kA followed the same trend as the number of photons of 10 keV to 12 keV. This suggests that the plasma current may be driven by energetic electrons. Based on the experimental conditions, alternative explanations of how the plasma current could be driven are discussed.
基金Project supported by the National Natural science Foundation of China
文摘Three- dimension (3-D) wind-driven currents in the Bohai Sea in both winter and summer are calculated by using a 3- D barotropic steady model, and the results are consistent with observed flow char -acteristics. Based on the results, 3- D characteristics of flow, currents at different depths, compensated flow in the lower layer , long and narrow alongshore current, the area of upwelling and downwelling, main circulation in vertical profile, and the current in Bohai Strait are discussed.
基金NationalNaturalScienceFoundationofChina (No .6 974 80 0 1) KeySubjectSpecialFoundationofMechanicalBureau
文摘The measurement theorem of fiber optically driven instrument for high-voltage line current is presented. The PLL voltage-frequency-narrow pulse principle and its micro-consumption mechanism are proposed, followed by analysis on the two main factors affecting PLL measurement precision. A software design scheme using 80C196KB micro-controller is introduced. The experiment result is satisfactory.
文摘The relation between domain wall motion and intensity of driven current is examined in a phenomenological theory where the kinetic energy is expanded as a series of polynomial function of current density just as the Landau phase transition theory. The dependency of velocity on current density is square root which degenerates into linear if the current is much higher than the critical value. The theory result is consistent with several previous experiments and also can explain the change of critical current in the presence of temperature. The role of temperature playing in the dynamics of domain wall motion is also discussed. The phase transition theory in terms of current density is employed to explain the critical behavior of domain wall motion.
基金Item Sponsored by National Natural Science Foundation of China(51204041)National High Technology Research and Development Program(863 Program) of China(2012AA03A502)+1 种基金Fundamental Research Funds for the Central Universities of China(N130402016)Program for Liaoning's Innovative Research Team in University of China(LT20120008)
文摘With ificreasing demand for large cylindrical forgings, a new technology--electroslag remelting (ESR) for direct manufacture of hollow ingots rather than solid ingots has been developed. The main features of the process include a T-shaped current supplying mould (CSM), double power supply, an ingot withdrawing system, a metal level automatic control system based on a level sensor using the electromagnetic eddy current method, and the exchange of a consumable multi-electrode. ANSYS software was used to calculate the fluid flow and heat transfer in the slag bath 1 and metal pool of this ESR hollow ingot process with its T-shaped CSM. The mathematmal model was Verified by measuring the geometry of the liquid metal pool as observed in the macrostructure of 4650 mm (external diameter)/ 4450 mm (internal diameter) hollow ingots by sulphur print method: the. observed shape and depth of the s!ag bath were consistent with the simulated results. Simulation of the ESR process can improve understanding of the process and allow better operating parameters to be selected.
基金Supported by the National Natural Science Foundation of China under Grant No 10275099, and the Natural Science Foundation Guangdong Province under Grant Nos 021707 and 001182.
文摘Transport of a Brownian particle moving in a symmetric potential is investigated in the presence of an asymmetric unbiased external force. The viscous medium is alternately in contact with the two heat reservoirs. We present the analytical expression of the net current at the quasi-steady state limit. It is found that the competition of the temporal asymmetric parameter of the driving force with the temperature difference leads to current reversals. The competition between the two opposite driving factors is a necessary but not a sufficient condition for current reversals.