期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Genome-wide analysis of the NF-Y gene family in non-heading Chinese cabbage and the involvement of Bc NF-YA8 in ABA-mediated flowering regulation
1
作者 Yan Li Yu Tao +5 位作者 Aimei Bai Haibin Wang Zhanghong Yu Tongkun Liu Xilin Hou Ying Li 《Horticultural Plant Journal》 2025年第2期661-679,共19页
The nuclear factor Y(NF-Y)is a class of heterotrimeric transcription factors comprising three subunits:NF-YA,NF-YB,and NF-YC.These transcription factors participate in many plant bioprocesses,including the regulation ... The nuclear factor Y(NF-Y)is a class of heterotrimeric transcription factors comprising three subunits:NF-YA,NF-YB,and NF-YC.These transcription factors participate in many plant bioprocesses,including the regulation of flowering time.Although the NF-Y gene family has been systematically studied in many species,little is known about its role in the non-heading Chinese cabbage(NHCC)[Brassica campestris(syn.Brassica rapa)ssp.chinensis].In this study,we identified 57 NF-Y members in the genome of NHCC using BLASTP,including 20 BcNF-YAs,24BcNF-YBs,and 13 BcNF-YCs.These genes are randomly distributed on the 10 chromosomes of NHCC.The results of yeast two-hybrid experiments indicated that among some members of the three subunits of BcNF-Ys,the members of the NF-YA and NF-YC subunits interact with each other,a third of the members of the NF-YB and NF-YC subunits interact with each other,while no interaction was observed between the members of the NF-YA and NF-YB subunits.Subcellular localization experiments in tobacco showed that Bc NF-YA2 and BcNF-YA8 were expressed in the nucleus;BcNF-YB18 and BcNF-YB23 were located in the cell membrane and cytoplasm;and BcNF-YC6 and BcNF-YC7 were expressed in the nucleus,cytoplasm,and cell membrane.We analyzed the cis-acting elements in the promoter of BcNF-Y genes and found that the ABA response element is the most distributed hormone response element,which is regulated by ABA signals triggered by environmental stimuli.Accordingly,we treated three-week-old NHCC leaves with 100μmol L^(-1) ABA and analyzed the expression profile of BcNF-Ys through RNA-seq.The results showed that except for six undetected BcNF-Ys,the remaining 51 BcNF-Ys showed varying degrees of response to ABA signals.Among these,BcNF-YA8 was positively regulated by ABA signals,with the highest upregulation amplitude.Subsequently,the function of BcNF-YA8 was extensively studied,which demonstrated that its expression promotes plant flowering.This result enriches our understanding of the potential molecular mechanism by which ABA positively regulates NHCC flowering. 展开更多
关键词 non-heading Chinese cabbage Nuclear factor Y Genome-wide analysis ABA FLOWER
在线阅读 下载PDF
Fast,simple,efficient Agrobacterium rhizogenes-mediated transformation system to non-heading Chinese cabbage with transgenic roots 被引量:1
2
作者 Huiyu Wang Yushan Zheng +3 位作者 Qian Zhou Ying Li Tongkun Liu Xilin Hou 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期450-460,共11页
Non-heading Chinese cabbage, a variety of Brassica campestris, is an important vegetable crop in the Yangtze River Basin of China. However,the immaturity of its stable transformation system and its low transformation ... Non-heading Chinese cabbage, a variety of Brassica campestris, is an important vegetable crop in the Yangtze River Basin of China. However,the immaturity of its stable transformation system and its low transformation efficiency limit gene function research on non-heading Chinese cabbage. Agrobacterium rhizogenes-mediated(ARM) transgenic technology is a rapid and effective transformation method that has not yet been established for non-heading Chinese cabbage plants. Here, we optimized conventional ARM approaches(one-step and two-step transformation methods) suitable for living non-heading Chinese cabbage plants in nonsterile environments. Transgenic roots in composite non-heading Chinese cabbage plants were identified using phenotypic detection, fluorescence observation, and PCR analysis. The transformation efficiency of a two-step method on four five-day-old non-heading Chinese cabbage seedlings(Suzhouqing, Huangmeigui, Wuyueman, and Sijiu Caixin) was 43.33%-51.09%, whereas using the stout hypocotyl resulted in a transformation efficiency of 54.88% for the 30-day-old Sijiu Caixin.The one-step method outperformed the two-step method;the transformation efficiency of different varieties was above 60%, and both methods can be used to obtain transgenic roots for functional studies within one month. Finally, optimized ARM transformation methods can easily,quickly, and effectively produce composite non-heading Chinese cabbage plants with transgenic roots, providing a reliable foundation for gene function research and non-heading Chinese cabbage genetic improvement breeding. 展开更多
关键词 Agrobacterium rhizogenes non-heading Chinese cabbage Transgenic roots Composite plant Transformation efficiency
在线阅读 下载PDF
The construction of a genetic linkage map of non-heading Chinese cabbage (Brassica campestris ssp.chinensis Makino) 被引量:9
3
作者 Yan Cheng Jianfeng Geng +3 位作者 Jingyi Zhang Qian Wang Qingyu Ban Xilin Hou 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2009年第8期501-508,共8页
Non-heading Chinese cabbage (Brassica carnpestris ssp. chinensis Makino) is one of the most important vegetables in eastern China. A genetic linkage map was constructed using 127 doubled haploid (DH) lines, and th... Non-heading Chinese cabbage (Brassica carnpestris ssp. chinensis Makino) is one of the most important vegetables in eastern China. A genetic linkage map was constructed using 127 doubled haploid (DH) lines, and the DH population was derived from a commercial hybrid "Hanxiao" (lines SW-13 x L-118). Out of the 614 polyrnorphic markers, 43.49% were not assigned to any of the linkage groups (LGs). Chi-square tests showed that 42.67% markers were distorted from expected Mendelian segregation ratios, and the direction of distorted segregation was mainly toward the paternal parent L-118. After sequentially removing the markers that had an interval distance smaller than 1 cM from the upper marker, the overall quality of the linkage map was increased. Two hundred and sixty-eight molecular markers were mapped into 10 LGs, which were anchored to the corresponding chromosome of the B. rapa reference map based on com- mon simple sequence repeat (SSR) markers. The map covers 973.38 cM of the genome and the average interval distance between markers was 3.63 cM. The number of markers on each LG ranged from 18 (R08) to 64 (R07), with an average interval distance within a single LG from 1.70 cM (R07) to 6.71 cM (R06). Among these mapped markers, 169 were sequence-related amplified polymorphism (SRAP) molecular markers, 50 were SSR markers and 49 were random amplification polymorphic DNA (RAPD) markers. With further saturation to the LG9 the current map offers a genetic tool for loci analysis for important agronomic traits. 展开更多
关键词 non-heading Chinese cabbage genetic linkage map SRAP SSR RAPD
原文传递
Effect of Partial Replacement of Nitrate by Amino Acid and Urea on Nitrate Content of Non-heading Chinese Cabbage and Lettuce in Hydroponic Condition 被引量:5
4
作者 CHEN Gui-lin, GAO Xiu-rui and ZHANG Xian-bin( College of Horticulture , Agricultural University of Hebei, Baoding 071001 , P. R . China ) 《Agricultural Sciences in China》 CAS CSCD 2002年第4期444-449,共6页
In this paper, the authors studied the effect of different mixtures of glycine (Gly), isoleucine (Iso), proline (Pro), and urea solutions used as a partial (20%) replacment of nitrate in the nitrate content and qualit... In this paper, the authors studied the effect of different mixtures of glycine (Gly), isoleucine (Iso), proline (Pro), and urea solutions used as a partial (20%) replacment of nitrate in the nitrate content and quality of non-heading Chinese cabbage and lettuce in hydroponice. Five treatments were done 12 d before harvest. Compared to the control group, Gly had the best effect in reducing the nitrate content of both vegetable leaves and petioles; the mixture of Gly, Iso and Pro ranked second and urea the least. Treatments with amino acid could also increase soluble sugar and protein contents and enhance total-N in leaves significantly. In contrast, amino acid enhanced NRA in non-heading Chinese cabbage, while they decreased it slightly in lettuce. The results showed that amino acids and urea could reduce the nitrate content of both vegetables, but they had almost the same effect on non-heading Chinese cabbage. Moreover, amino acids were more effective than urea in lettuce. As a result, it was concluded that partial replacement of nitrate with amino acids not only reduced the nitrate content but also improved the quality of vegetables. 展开更多
关键词 non-heading Chinese cabbage LETTUCE Hydroponice Nutrient solution Amino acid NITRATE
在线阅读 下载PDF
Molecular Cloning,Expression Analysis and Localization of Exo70A1 Related to Self Incompatibility in Non-Heading Chinese Cabbage(Brassica campestris ssp.chinensis) 被引量:1
5
作者 WANG Li GE Ting-ting +4 位作者 PENG Hai-tao WANG Cheng LIU Tong-kun HOU Xi-lin LI Ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第12期2149-2156,共8页
The exocyst is a conserved protein complex,and required for vesicles tethering,fusion and polarized exocytosis.Exo70A1,the exocyst subunit,is essential for assembly of the exocyst complex.To better understand potentia... The exocyst is a conserved protein complex,and required for vesicles tethering,fusion and polarized exocytosis.Exo70A1,the exocyst subunit,is essential for assembly of the exocyst complex.To better understand potential roles of Exo70A1 in non-heading Chinese cabbage(Brassica campestris ssp.chinensis),we obtained the full-length cDNA of Exo70A1 gene,which consisted of 1 917 bp and encoded a protein of 638 amino acids.BlastX showed BcExo70A1 shared 94.9% identity with Brassica oleracea var.acephala(AEI26267.1),and clustered into a same group with other homologues in B.oleracea var.acephala and Brassica napus.Subcellular localization analysis showed BcExo70A1 was localized to punctate structures in cytosol of onion epithelial cells.Results showed that BcExo70A1 was widely presented in stamens,young stems,petals,unpollinated pistils,roots and leaves of self compatible and incompatible plants.The transcripts of BcExo70A1 in non- heading Chinese cabbage declined during initial 1.5 h after incompatible pollination,while an opposite trend was presented after compatible pollination.Our study reveals that BcExo70A1 could play essential roles in plant growth and development,and is related to the rejection of self pollen in non-heading Chinese cabbage. 展开更多
关键词 Exo70A1 gene expression subcellular localization SELF-INCOMPATIBILITY non-heading Chinese cabbage
在线阅读 下载PDF
Using a Suppression Subtractive Library-Based Approach to Identify Non-Heading Chinese Cabbage Genes Up-Regulated in Early Response to Elicitor PB90
6
作者 GAN Yun-zhe ZHANG Zheng-guang WANG Yuan-chao ZHENG Xiao-bo 《Agricultural Sciences in China》 CAS CSCD 2008年第3期303-313,共11页
Monitoring expression at the transcriptional level is the first essential step for the functional analysis of plant genes. Genes-encoding proteins directly involved in early response to elicitor constitute only a smal... Monitoring expression at the transcriptional level is the first essential step for the functional analysis of plant genes. Genes-encoding proteins directly involved in early response to elicitor constitute only a small fraction of all the genes affected by elicitor. Transcriptional responses to various elicitors have been extensively studied in different plants including Nicotiana and Arabidopsis thaliana; however, corresponding data aren't available for non-heading Chinese cabbage. To address this problem, we describe a suppression subtractive library-based approach to isolate the plant's ESTs up-regulated in the early induction/execution of the HR induced by elicitor PB90 from Phytophthora boehmeriae. According to their putative identification in BLAST searches against the three genome databases, 70 up-regulated genes were classified into 9 parts: some aspect of primary 'metabolism' or 'energy' production; 'protein synthesis' or 'protein fate'; cellular communication/signal transduction mechanism; cell fates including Beclin, SPT1, and SPT2; HLA-B and AGO1 which participate in transcription; cellular transport and hypothetical proteins or proteins for which a function has yet to be determined. Seven selected genes such as Beclin, thioredoxin, HLA-B, MAP3K, SPT1, SPT2, and AGO1 were up-regulated induced by PB90, suggesting that the genes may play an important role in PB90-triggered HR. 展开更多
关键词 PB90 non-heading Chinese cabbage suppression subtractive hybridization up-regulated hypersensitive response
在线阅读 下载PDF
Zinc chemical forms and organic acid exudation in non-heading Chinese cabbages under zinc stress
7
作者 Xiaoyun Li Xiuling Chen Xiumin Cui 《Agricultural Sciences》 2012年第4期562-566,共5页
As an essential element, zinc also is a heavy metal. Non-heading Chinese cabbage showed obvious tolerance to Zn stress in former research. To further understand the mechanisms involved in Zn adaptability and detoxific... As an essential element, zinc also is a heavy metal. Non-heading Chinese cabbage showed obvious tolerance to Zn stress in former research. To further understand the mechanisms involved in Zn adaptability and detoxification, two genotypes Suzhouqing and Aijiaohuang were selected to investigate the chemical forms of Zn and root exudation. Zinc stress obvious strained the plant growth, and Aijiaohuang was more injured than Suhouqing under Zn stress. Under normal Zn levels, the chemical forms of Zn were diverse in three organs between genotypes. Results showed extractions of 2% HAc, 80% ethanol and 1 M NaCl were separately dominant in roots, petioles and leaves. However, under Zn stress (13 mg·L–1 and 52 mg·L–1) most of the Zn was extracted by 1M NaCl, and the subdominant amount of Zn was extracted by 80% ethanol. In the control only four types of organic acid could be detected. While under Zn stress, oxalic acid, tartaric acid, malic acid, lactic acid, acetic acid, citric acid and amber acid were all detected, so it could be speculated Zn detoxification with organic ligands or integrated with pectates and proteins in cells might be responsible for the adaptation of Zn stress in Chinese cabbage. 展开更多
关键词 non-heading Chinese CABBAGES Zn STRESS Chemical FORMS ROOT EXUDATION
暂未订购
Isolation and characterization of an ERF-B3 gene associated with flower abnormalities in non-heading Chinese cabbage
8
作者 XU Yu-chao HOU Xi-lin +4 位作者 XU Wei-wei SHEN Lu-lu Lü Shan-wu ZHANG Shi-lin HU Chun-mei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第3期528-536,共9页
BrcERF-B3 gene, a member of ethylene-responsive factor family, was screened from a mutant plant in non-heading Chinese cabbage(Brassica rapa ssp. chinensis) by cDNA-AFLP technology. We got full length cDNA of two Br... BrcERF-B3 gene, a member of ethylene-responsive factor family, was screened from a mutant plant in non-heading Chinese cabbage(Brassica rapa ssp. chinensis) by cDNA-AFLP technology. We got full length cDNA of two BrcERF-B3 genes by homology-based cloning from two materials and found that their nucleotide sequences were the same by sequencing. The BrcERF-B3 protein, belonging to the B3 subgroup of the ERF subfamily, shared a close relationship with B. rapa. RT-PCR result showed that BrcERF-B3 expressed only in mutant stamen rather than maintainer stamen. qRT-PCR results indicated that BrcERF-B3 expressed highly during reproductive growth development and in the early of mutant buds, suggesting BrcERF-B3 might be involved in the formation of abnormal flower in mutant. What's more, the expression of BrcERF-B3 was more significant to ABA, Me JA and cold stresses in mutant than in maintainer and was down-regulated in NaCl treatment in two lines, implying BrcERF-B3 might be different roles in biotic and abiotic stresses. 展开更多
关键词 non-heading Chinese cabbage stamen-petalody ethylene-responsive factor gene expression
在线阅读 下载PDF
Isolation and Characterization of a Novel Chitosan-Binding Protein from Non-Heading Chinese Cabbage Leaves 被引量:9
9
作者 Hui-PingCHEN Lang-LaiXU 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2005年第4期452-456,共5页
Abstract: To know the mechanism of ammonia assimilation in non-heading Chinese cabbage (Brassica campestrish L. ssp. chinensis (L.) Makino) leaves regulated by chitosan (CTS), a CTS-binding protein was isolated from n... Abstract: To know the mechanism of ammonia assimilation in non-heading Chinese cabbage (Brassica campestrish L. ssp. chinensis (L.) Makino) leaves regulated by chitosan (CTS), a CTS-binding protein was isolated from non-heading Chinese cabbage leaves using the chitosan affinity chromatography approach and this CTS-binding protein was partially characterized. The profile of the 53.1 kDa purified protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was compared with the native molecular weight of 106.5 kDa, which indicated that the purified protein was a dimer with identical subunits. After isoelectric focusing, a band was obtained at pH 8.25. The agglutination test and periodic acid-Schiff staining further revealed that the protein was a glycoprotein with lectin activity. Moreover, the purified protein contained 17.4% (w/w) neutral carbohydrate and 82.56% (w/w) protein. The comparison of this protein and the 67 kDa CTS-binding protein isolated previously from Rubus culture tissue exhibited some differences in characterization. According to results of peptide mass fingerprinting analysis, the protein purified in the present study does not show any similarity with any protein in the protein data bank. Thus, it was deduced that the protein purified in the present study is a novel CTS-binding protein. 展开更多
关键词 binding-protein CHITOSAN non-heading Chinese cabbage
原文传递
Fine mapping and cloning of the sterility gene Bra2Ms in nonheading Chinese cabbage(Brassica rapa ssp.chinensis)
10
作者 Liping Song Xia Li +8 位作者 Liguang Tang Chuying Yu Bincai Wang Changbin Gao Yanfeng Xie Xueli Zhang Junliang Wang Chufa Lin Aihua Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1195-1204,共10页
The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa a... The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa are still largely unclear.We previously obtained the natural male sterile line WS24-3 of non-heading Chinese cabbage and located the male sterile locus,Bra2Ms,on the A2 chromosome.Cytological observations revealed that the male sterility of WS24-3 resulted from disruption of the meiosis process during pollen formation.Fine mapping of Bra2Ms delimited the locus within a physical distance of about 129 kb on the A2 chromosome of B.rapa.The Bra039753 gene encodes a plant homeodomain(PHD)-finger protein and is considered a potential candidate gene for Bra2Ms.Bra039753 was significantly downregulated in sterile line WS24-3 compared to the fertile line at the meiotic anther stage.Sequence analysis of Bra039753 identified a 369 bp fragment insertion in the first exon in male sterile plants,which led to an amino acid insertion in the Bra039753 protein.In addition,the 369 bp fragment insertion was found to cosegregate with the male sterility trait.This study identified a novel locus related to male sterility in non-heading Chinese cabbage,and the molecular marker obtained in this study will be beneficial for the marker-assisted selection of excellent sterile lines in non-heading Chinese cabbage and other Brassica crops. 展开更多
关键词 non-heading Chinese cabbage male sterility Bra2Ms fine mapping PHD-finger protein
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部