期刊文献+
共找到311篇文章
< 1 2 16 >
每页显示 20 50 100
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:30
1
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm nsga)-II
在线阅读 下载PDF
Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-II 被引量:3
2
作者 Xi JIN Jie ZHANG +1 位作者 Jin-liang GAO Wen-yan WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期391-400,共10页
Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to sol... Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions. 展开更多
关键词 Water supply system Water supply network Optimal rehabilitation MULTI-OBJECTIVE non-dominated sorting Ge-netic algorithm nsga
在线阅读 下载PDF
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
3
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
在线阅读 下载PDF
Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-dominated Sorting Genetic Algorithm 被引量:2
4
作者 Qingsong Wang Siwei Li +2 位作者 Hao Ding Ming Cheng Giuseppe Buja 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期574-583,共10页
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical... This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis. 展开更多
关键词 DC distribution network DC electric spring non-dominated sorting genetic algorithm particle swarm optimization renewable energy source
原文传递
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem 被引量:1
5
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
在线阅读 下载PDF
基于NSGA-Ⅱ算法的柔性气缸弹射影响参数优化研究
6
作者 王卓越 杨宝生 +2 位作者 姜毅 杨哩娜 王汉平 《振动与冲击》 北大核心 2025年第9期99-108,共10页
柔性气缸弹射作为一种新型弹射方法,具有红外目标隐蔽,能量输出稳定等优点。为解决柔性气缸弹射过载较大、响应时间较长的问题,进一步提高弹射响应速度和弹射稳定性,引入了一种代理模型优化方法对柔性气缸弹射过程进行优化,旨在减小弹... 柔性气缸弹射作为一种新型弹射方法,具有红外目标隐蔽,能量输出稳定等优点。为解决柔性气缸弹射过载较大、响应时间较长的问题,进一步提高弹射响应速度和弹射稳定性,引入了一种代理模型优化方法对柔性气缸弹射过程进行优化,旨在减小弹射过载并提升弹射速度。基于代理模型理论,建立柔性气缸弹射代理模型,对代理模型进行精度分析,在此基础上,深入探究了充气孔直径、开启时间以及开启时长这三个关键参数对弹射动力学响应的具体影响。结合NSGA-Ⅱ(non-dominated sorting genetic algorithm II)优化算法,对弹射模型的相关参数进行了优化处理。研究结果显示:采用粒子法的有限元模型能够精确模拟柔性气缸的弹射过程;进一步的分析表明,相较于响应面模型Kriging代理模型在替代柔性气缸有限元模型方面展现出了更高的准确性。针对初始设计点,提出了通过NSGA-Ⅱ算法优化的均衡设计方案,该方案成功地将弹射速度提升了4.79%,同时将弹射过载降低了21.70%;并针对弹射速度与最大过载的优化过程给出了优化方案。 展开更多
关键词 粒子法 柔性气缸弹射 Kriging代理模型 nsga-Ⅱ算法
在线阅读 下载PDF
OTPA结合NSGA-Ⅱ算法的产品包装系统优化设计
7
作者 陆怡宇 张元标 +1 位作者 杨松平 聂楚昕 《振动与冲击》 北大核心 2025年第1期102-112,共11页
利用工况传递路径分析(operational transfer path analysis,OTPA)方法分析随机振动不同激励谱型、不同振动等级下产品包装系统的振动传递特性,结合非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)进行包装系... 利用工况传递路径分析(operational transfer path analysis,OTPA)方法分析随机振动不同激励谱型、不同振动等级下产品包装系统的振动传递特性,结合非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)进行包装系统优化设计。试验结果表明:产品关键元件实测振动加速度响应曲线与OTPA方法合成的加速度响应曲线吻合良好,验证了OTPA方法的正确性;通过OTPA方法量化各传递路径的振动贡献量,对比识别出产品包装系统的主要振动传递路径;保持非主要传递路径的缓冲衬垫材料不变,应用NSGA-Ⅱ算法优化产品包装件系统中主要振动传递路径处的缓冲衬垫分配,有效降低了关键元件的加速度响应,减少在振动过程中的能量聚集,促使各传递路径的振动贡献量趋于均衡。实现了以缓冲性能为主导,同时兼顾环保性能与成本的包装系统优化设计,验证了优化方法的有效性,为产品包装系统设计提供参考。 展开更多
关键词 随机振动 工况传递路径分析(OTPA) 振动贡献量 非支配排序遗传算法(nsga-Ⅱ) 减振优化
在线阅读 下载PDF
基于NSGA-Ⅱ的风电场混合储能容量与功率分配协同优化
8
作者 李月娟 叶剑华 +1 位作者 杨耿煌 罗凤章 《天津职业技术师范大学学报》 2025年第1期19-26,32,共9页
风储联合发电系统能有效解决风力发电波动性和随机性的问题,针对系统中的功率分解算法参数设置和混合储能容量配置,提出一种多目标协同优化的风电并网控制方法。提出基于变分模态分解(VMD)和低通滤波算法进行功率分配的初级分配策略。... 风储联合发电系统能有效解决风力发电波动性和随机性的问题,针对系统中的功率分解算法参数设置和混合储能容量配置,提出一种多目标协同优化的风电并网控制方法。提出基于变分模态分解(VMD)和低通滤波算法进行功率分配的初级分配策略。考虑储能元件的运行特性和复杂的实际运行工况,通过模糊控制对储能功率分配进行二次修正。建立以风电并网波动量最小和混合储能全寿命周期成本最低为目标函数的多目标协同优化模型。采用非支配排序遗传算法(NSGA-Ⅱ )求解该协同优化模型,通过算例分析验证了所提方法的经济性和有效性。 展开更多
关键词 混合储能 变分模态分解 协同优化 模糊控制 非支配排序遗传算法(nsga-Ⅱ)
在线阅读 下载PDF
基于NSGA-Ⅱ算法的耐压壳多目标优化设计与分析
9
作者 陶智聪 吴俊岑 +2 位作者 孟宪达 孙瞳 张亚 《船舶》 2025年第4期66-74,共9页
为提升潜水器耐压壳水下结构的综合性能,需聚焦于多目标优化设计研究,从而实现质量、强度和稳定性的协同提升。该文采用参数化分析流程对初始环肋耐压壳方案展开研究,通过最优拉丁超立方设计法进行采样,探讨设计变量对目标响应的影响;... 为提升潜水器耐压壳水下结构的综合性能,需聚焦于多目标优化设计研究,从而实现质量、强度和稳定性的协同提升。该文采用参数化分析流程对初始环肋耐压壳方案展开研究,通过最优拉丁超立方设计法进行采样,探讨设计变量对目标响应的影响;建立了高精度响应面模型及相应的多目标优化模型,进而通过第二代非支配排序遗传算法(non-dominated sorting genetic algorithm II,NSGA-II)对耐压壳多目标优化求解。研究表明:4组优化方案中,A、C方案分别减重7.3 kg和6.6 kg,B、D方案的极限强度分别提高0.177 MPa和0.031 MPa,由此证明结合响应面模型和遗传算法的多目标优化方法能有效提升潜水器耐压壳的性能,为深海探测装备的设计提供参考。 展开更多
关键词 环肋耐压壳 响应面模型 多目标优化 第二代非支配排序遗传算法
在线阅读 下载PDF
Satellite constellation design with genetic algorithms based on system performance
10
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithmnsga Pareto optimal set satellite constellation design surveillance performance
在线阅读 下载PDF
基于改进NSGA-Ⅱ算法的航空器滑行路径多目标优化
11
作者 钟庆伟 唐浩铭 +3 位作者 庾映雪 张永祥 姚俊杰 潘明思语 《科学技术与工程》 北大核心 2025年第20期8737-8744,共8页
随着全球航空业的快速发展,机场场面航空器滑行管理难度增加,如何在保障安全和提升效率的同时减少对环境的影响变得尤为重要。针对该问题,以预防滑行路径冲突为基础约束条件,以滑行时间最短和二氧化碳(carbon dioxide,CO_(2))排放量最... 随着全球航空业的快速发展,机场场面航空器滑行管理难度增加,如何在保障安全和提升效率的同时减少对环境的影响变得尤为重要。针对该问题,以预防滑行路径冲突为基础约束条件,以滑行时间最短和二氧化碳(carbon dioxide,CO_(2))排放量最小为优化目标建立混合整数线性优化模型,并设计非支配排序遗传算法Ⅱ(non-dominated sorting genetic algorithmⅡ,NSGA-Ⅱ)进行动态求解。最后,以中国某枢纽机场为算例背景,借助Python语言实现NSGA-Ⅱ算法,并与商业优化求解器Gurobi进行对比。计算结果表明:航空器数量为14架次时,与优化前相比,总滑行时间减少约17.46%,CO_(2)排放量降低约18.35%;NSGA-Ⅱ算法得到的可行解与Gurobi所求最优解间的距离为1.083%,但NSGA-Ⅱ的求解时间相对减少95.0%。同时,通过多个算例测试表明,NSGA-Ⅱ算法在处理大规模多目标路径优化问题时具有显著优势。所提出的优化方案可有效提升机场场面运营效率并减少CO_(2)排放。 展开更多
关键词 滑行路径优化 多目标优化 非支配排序遗传算法(nsga-Ⅱ) 数学求解器 动态优化 CO_(2)排放
在线阅读 下载PDF
“双碳”目标下基于改进型NSGA-Ⅱ的港口作业调度优化算法
12
作者 刘树东 吴昊 +1 位作者 丛佳 顾播宇 《计算机应用》 北大核心 2025年第6期1945-1953,共9页
随着全球气候变化问题的日益严峻,我国提出了“双碳”目标(碳达峰和碳中和)。而港口作为物流枢纽和货物集散地,它的碳排放问题尤为突出。针对港口作业调度优化问题,考虑船舶到港时间、货物装卸需求、岸桥作业能力及碳排放成本等关键因素... 随着全球气候变化问题的日益严峻,我国提出了“双碳”目标(碳达峰和碳中和)。而港口作为物流枢纽和货物集散地,它的碳排放问题尤为突出。针对港口作业调度优化问题,考虑船舶到港时间、货物装卸需求、岸桥作业能力及碳排放成本等关键因素,构建最小化碳排放成本和码头运营成本的作业调度优化模型,并提出一种“双碳”目标下基于改进型非支配排序遗传算法(NSGA-Ⅱ)(E-NSGA-Ⅱ)的港口作业调度优化算法。首先,调整算法的编码策略、种群初始化方法和交叉变异操作;其次,设计不可行解的基因修复算子,并引入自适应交叉与变异概率机制。实验结果表明,与FCFS(First Come First Service)调度算法相比,所提算法在模型求解中的总成本下降了7.9%,碳排放成本下降了19.7%,码头运营成本下降了6.5%。以上研究结果丰富了多目标优化算法和港口作业调度理论,并为港口企业实现绿色调度、降低运营成本和提升经济效益提供了有力支持。 展开更多
关键词 “双碳”目标 碳排放 码头运营成本 港口作业调度优化算法 nsga-Ⅱ
在线阅读 下载PDF
基于DQN的改进NSGA-Ⅱ求解多目标柔性作业车间调度问题
13
作者 郑国梁 张朝阳 +1 位作者 吉卫喜 于俊杰 《现代制造工程》 北大核心 2025年第9期1-11,共11页
提出了一种基于深度Q网络(Deep Q-Network,DQN)改进的非支配排序遗传算法(Non-dominated Sorting Genetic AlgorithmⅡ,NSGA-Ⅱ),以解决以最小化最大完工时间和最小化能源消耗为目标的多目标柔性作业车间调度问题(Multi-Objective Flexi... 提出了一种基于深度Q网络(Deep Q-Network,DQN)改进的非支配排序遗传算法(Non-dominated Sorting Genetic AlgorithmⅡ,NSGA-Ⅱ),以解决以最小化最大完工时间和最小化能源消耗为目标的多目标柔性作业车间调度问题(Multi-Objective Flexible Job shop Scheduling Problem,MO-FJSP)。通过在DQN算法中定义马尔可夫决策过程和奖励函数,考虑选定设备对完工时间和能源消耗的局部及全局影响,提高了NSGA-Ⅱ初始种群的质量。改进的NSGA-Ⅱ通过精英保留策略确保运行过程中的种群多样性,并保留了进化过程中优质的个体。将DQN算法生成的初始解与贪婪算法生成的初始解进行对比,验证了DQN算法在生成初始解方面的有效性。此外,将基于DQN算法的改进NSGA-Ⅱ与其他启发式算法在标准案例和仿真案例上进行对比,证明了其在解决MO-FJSP方面的有效性。 展开更多
关键词 深度Q网络算法 多目标柔性作业车间调度问题 奖励函数 非支配排序遗传算法
在线阅读 下载PDF
A decoupled multi-objective optimization algorithm for cut order planning of multi-color garment
14
作者 DONG Hui LYU Jinyang +3 位作者 LIN Wenjie WU Xiang WU Mincheng HUANG Guangpu 《High Technology Letters》 2025年第1期53-62,共10页
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish... This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises. 展开更多
关键词 multi-objective optimization non-dominated sorting in genetic algorithmsⅡ(nsgaII) cut order planning(COP) multi-color garment linear programming decoupling strategy
在线阅读 下载PDF
基于SLP与NSGA-II的KF公司通用阀车间布局优化
15
作者 陈洪鑫 《科技和产业》 2025年第13期40-50,共11页
针对因KF公司通用阀车间布局不合理而导致物料搬运交叉多、搬运成本高、面积利用率低等问题,构建考虑物料顺、逆流动方向的,以最小化物料搬运成本、最大化非物流关系和车间面积利用率为目标的布局优化模型。运用系统布置设计(SLP)方法... 针对因KF公司通用阀车间布局不合理而导致物料搬运交叉多、搬运成本高、面积利用率低等问题,构建考虑物料顺、逆流动方向的,以最小化物料搬运成本、最大化非物流关系和车间面积利用率为目标的布局优化模型。运用系统布置设计(SLP)方法对车间布局进行优化得到初步布局方案。在传统非支配排序遗传算法(NSGA-II)的基础上,为提高算法初始种群的多样性将SLP方法得到的初步布局方案编码作为初始种群的一部分,将自适应控制策略引入交叉、变异操作中,并加入模拟退火算法。最后使用层次分析法(AHP)对算法得到的一组Pareto最优解集进行优化方案决策。结果表明,此方法能使物料搬运成本减少38.83%,非物流关系增加了44.83%,车间面积利用率优化了19.50%,证明了该模型在车间布局优化时的有效性。 展开更多
关键词 车间布局 多目标优化 nsga-II(非支配排序遗传算法) SLP(系统布置设计)
在线阅读 下载PDF
Suspended sediment load prediction using non-dominated sorting genetic algorithm Ⅱ 被引量:4
16
作者 Mahmoudreza Tabatabaei Amin Salehpour Jam Seyed Ahmad Hosseini 《International Soil and Water Conservation Research》 SCIE CSCD 2019年第2期119-129,共11页
Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating... Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model. 展开更多
关键词 Clustering Neural network non-dominated sorting genetic algorithm (nsga-Ⅱ) SEDIMENT RATING CURVE SELF-ORGANIZING map
原文传递
基于NSGA-Ⅱ的滑油泵叶轮结构优化设计 被引量:3
17
作者 孙永国 金欣 +2 位作者 薛冬 单建平 石晓春 《中国机械工程》 EI CAS CSCD 北大核心 2024年第3期559-569,共11页
滑油泵常需要在高空、低压工况下稳定运转,常会出现供油不足、效率降低等问题。为了得到满足设计要求且具有最佳性能的滑油泵,以某直升机用滑油泵叶轮为研究对象,对其结构进行优化设计。选择高空两个典型工况的效率与扬程作为优化目标,... 滑油泵常需要在高空、低压工况下稳定运转,常会出现供油不足、效率降低等问题。为了得到满足设计要求且具有最佳性能的滑油泵,以某直升机用滑油泵叶轮为研究对象,对其结构进行优化设计。选择高空两个典型工况的效率与扬程作为优化目标,利用NSGA-Ⅱ算法对滑油泵叶轮几何参数进行寻优,对优化前后的滑油泵效率、扬程进行对比分析。采用CFD流体仿真及实验方法对优化结果进行对比验证。结果表明:所选优化参数对滑油泵性能有较大影响,优化后的滑油泵叶片位置附近流动更加平稳,高低压区域过渡平缓,能量损失更小,且降低了汽蚀发生的可能性;优化后的滑油泵设计点扬程提高2.6 m,效率提高2.86%。 展开更多
关键词 滑油泵叶轮 优化设计 非支配排序遗传算法nsga-Ⅱ 扬程 效率
在线阅读 下载PDF
基于CatBoost-NSGA-Ⅲ算法的盾构姿态预测与优化
18
作者 吴贤国 刘俊 +3 位作者 曹源 雷宇 李士范 覃亚伟 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期69-77,共9页
为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影... 为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影响因素作为输入参数,利用CatBoost算法建立输入参数与盾构姿态之间的非线性映射函数关系,采用随机森林(RF)算法评价输入参数的重要性;以盾构姿态绝对值最小化为目标,构建CatBoost-NSGA-Ⅲ多目标优化模型,并通过案例分析验证所提方法的适用性和有效性。结果表明:采用CatBoost算法训练工程实测数据得到的预测模型具有较高的精度,5个盾构姿态目标的R^(2)范围为0.916~0.943;所研发的CatBoost-NSGA-Ⅲ盾构姿态多目标优化方法,可使盾构姿态得到显著优化,整体改进的平均值为53.34%。 展开更多
关键词 类别型特征梯度提升(CatBoost) 第三代非支配排序遗传算法(nsga-Ⅲ) 盾构姿态 多目标优化 重要性排序
原文传递
Optimization of solar thermal power station LCOE based on NSGA-Ⅱ algorithm 被引量:3
19
作者 LI Xin-yang LU Xiao-juan DONG Hai-ying 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期1-8,共8页
In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied ... In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high. 展开更多
关键词 solar thermal power generation levelling cost of energy(LCOE) linear Fresnel non-dominated sorting genetic algorithm II(nsga-II)
在线阅读 下载PDF
Models for Location Inventory Routing Problem of Cold Chain Logistics with NSGA-Ⅱ Algorithm 被引量:1
20
作者 郑建国 李康 伍大清 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期533-539,共7页
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location... In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem. 展开更多
关键词 cold chain logistics MULTI-OBJECTIVE location inventory routing problem(LIRP) non-dominated sorting in genetic algorithm Ⅱ(nsga-Ⅱ)
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部