期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:30
1
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
在线阅读 下载PDF
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
2
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
在线阅读 下载PDF
Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-dominated Sorting Genetic Algorithm 被引量:2
3
作者 Qingsong Wang Siwei Li +2 位作者 Hao Ding Ming Cheng Giuseppe Buja 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期574-583,共10页
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical... This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis. 展开更多
关键词 DC distribution network DC electric spring non-dominated sorting genetic algorithm particle swarm optimization renewable energy source
原文传递
Satellite constellation design with genetic algorithms based on system performance
4
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) Pareto optimal set satellite constellation design surveillance performance
在线阅读 下载PDF
A decoupled multi-objective optimization algorithm for cut order planning of multi-color garment
5
作者 DONG Hui LYU Jinyang +3 位作者 LIN Wenjie WU Xiang WU Mincheng HUANG Guangpu 《High Technology Letters》 2025年第1期53-62,共10页
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish... This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises. 展开更多
关键词 multi-objective optimization non-dominated sorting in genetic algorithmsⅡ(NSGAII) cut order planning(COP) multi-color garment linear programming decoupling strategy
在线阅读 下载PDF
Suspended sediment load prediction using non-dominated sorting genetic algorithm Ⅱ 被引量:4
6
作者 Mahmoudreza Tabatabaei Amin Salehpour Jam Seyed Ahmad Hosseini 《International Soil and Water Conservation Research》 SCIE CSCD 2019年第2期119-129,共11页
Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating... Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model. 展开更多
关键词 Clustering Neural network non-dominated sorting genetic algorithm (NSGA-Ⅱ) SEDIMENT RATING CURVE SELF-ORGANIZING map
原文传递
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem 被引量:1
7
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
在线阅读 下载PDF
基于改进NSGA-Ⅲ的多Delta机器人协作食品动态分拣研究 被引量:1
8
作者 郭凌岑 王海晖 +1 位作者 赵小霏 王思璐 《食品与机械》 北大核心 2025年第7期72-77,共6页
[目的]探索提升多Delta机器人协作的食品动态分拣准确率和效率的方法。[方法]基于多Delta机器人食品自动化生产线,提出一种结合动态目标跟踪、多机器人任务分类和机器人轨迹规划的多Delta机器人协作食品动态分拣方法。通过精确计算传送... [目的]探索提升多Delta机器人协作的食品动态分拣准确率和效率的方法。[方法]基于多Delta机器人食品自动化生产线,提出一种结合动态目标跟踪、多机器人任务分类和机器人轨迹规划的多Delta机器人协作食品动态分拣方法。通过精确计算传送带移动距离,并结合相机实时采集的目标坐标信息,实现对食品动态位置的精准捕捉。通过集中控制分配策略,根据各机器人的工作状态与任务优先级,科学合理地进行任务分配。通过改进的第三代非支配排序遗传算法和5次非均匀有理B样条曲线实现多目标综合最优轨迹规划。并通过搭建试验平台对所提方法的性能进行全面验证。[结果]试验所提多Delta机器人协作分拣方法具有优异的性能。在实际运行中,该方法实现了食品分拣的高精度、高效率与高稳定性,分拣成功率为100%,分拣平均时间为0.231 s,平均运行冲击为4.45×10^(3)(°)/s^(3),平均运行能耗为2.45×10^(2)(°)/s^(2),有效满足了食品生产对高效、稳定作业的需求。[结论]通过优化现有动态分拣方法并结合多机器人可以实现食品的准确、高效和稳定分拣。 展开更多
关键词 食品自动化生产线 多Delta机器人 动态目标跟踪 第三代非支配排序遗传算法 非均匀有理B样条
在线阅读 下载PDF
强对流天气下航路多目标改航规划 被引量:2
9
作者 黄洲升 田齐齐 唐卫贞 《科学技术与工程》 北大核心 2025年第4期1648-1657,共10页
为了提高航空器在受到强对流天气影响区域中航路的通行效能,优化强对流天气影响下的航空器的改航路径,提出基于第三代非支配排序遗传算法(non-dominated sorting genetic algorithm III,NSGA-III)的多目标改航路径规划方法。通过构建飞... 为了提高航空器在受到强对流天气影响区域中航路的通行效能,优化强对流天气影响下的航空器的改航路径,提出基于第三代非支配排序遗传算法(non-dominated sorting genetic algorithm III,NSGA-III)的多目标改航路径规划方法。通过构建飞行环境模型,根据空域情况划设飞行受限区,并在此基础上着重考虑航空器实施改航区域中强对流天气的影响,以航空器运行成本最低、改航角度最小、非直线系数最小、天气影响最小为目标,利用NSGA-III综合考虑安全性、经济性等因素,对某空域航路进行强对流天气下多目标改航的规划,并进行仿真分析。结果表明:NSGA-III能够综合考虑所提出的4个目标,计算出多条有效的备选改航路径。在选定2个改航点的条件下,在保障航空器安全运行的前提下考虑运行的经济性、合理性后,共有91条备选航路可供选择。 展开更多
关键词 多目标改航规划 第三代非支配排序遗传算法(NSGA-iii) 强对流天气 交通运输规划与管理 空中交通流量管理
在线阅读 下载PDF
考虑行驶特性的电动汽车充电站联合电储能系统最优规划
10
作者 韩一鸣 贺彬 +1 位作者 杨博 李嘉乐 《上海交通大学学报》 北大核心 2025年第11期1720-1731,I0010-I0014,共17页
随着国内电动汽车保有量的不断提升,为了满足电动汽车日益增长的充电需求,电动汽车充电站(EVCS)开始大量接入配电网,给配电网的稳定性、安全性和经济性带来前所未有的挑战.为了缓解EVCS带来配电网冲击的同时保证投资者和电动汽车用户的... 随着国内电动汽车保有量的不断提升,为了满足电动汽车日益增长的充电需求,电动汽车充电站(EVCS)开始大量接入配电网,给配电网的稳定性、安全性和经济性带来前所未有的挑战.为了缓解EVCS带来配电网冲击的同时保证投资者和电动汽车用户的利益,提出一种考虑电动汽车用户行为特性的EVCS联合电池储能系统(BESS)的多目标规划模型.该模型以最小化EVCS和BESS综合成本、用户等待时间和系统电压波动为目标,通过规划EVCS及BESS实现经济性与稳定性的最佳权衡;并采用非支配排序遗传算法(NSGA-Ⅲ)分别在扩展的IEEE-33节点测试系统与昆明市呈贡区大学城上进行验证.仿真结果表明:在IEEE-33节点测试系统,与未配置BESS时相比,电压波动与系统网损分别下降36.73%和35.41%,有效提高了配网的稳定性与经济性. 展开更多
关键词 电动汽车 储能系统 充电需求预测 选址定容 非支配排序遗传算法
在线阅读 下载PDF
基于多目标优化的贵德盆地增强型地热系统设计与潜力分析
11
作者 胡波文 羊嘉杰 +4 位作者 叶志伟 李培博 梁伟 孙锐 刘奇 《地球物理学进展》 北大核心 2025年第1期80-93,共14页
贵德盆地作为我国干热岩开发重要靶区,需进行开采潜力评估以及增强型地热系统(EGS)建造可行性探究.因此本文以贵德盆地干热岩储层为研究对象,建立了热-流-固耦合数值模型,对比了水基和二氧化碳基增强型地热系统在不同注入流量、注入温... 贵德盆地作为我国干热岩开发重要靶区,需进行开采潜力评估以及增强型地热系统(EGS)建造可行性探究.因此本文以贵德盆地干热岩储层为研究对象,建立了热-流-固耦合数值模型,对比了水基和二氧化碳基增强型地热系统在不同注入流量、注入温度和井间距条件下的采热表现,选定了适合贵德盆地的工作流体.随后利用第三代非支配排序遗传算法对贵德盆地EGS工程参数(注入流量、注入温度和井间距)进行了多目标优化并利用优劣解法对Pareto前沿中的个体进行排序,确定了最优参数组合建议并为贵德盆地EGS建造提供了参考.最后基于最优参数组合,评估了贵德盆地干热岩开发潜力以及经济和环境效益.研究结果表明:(1)二氧化碳因其较稳定的生产和较低的功耗而更适合作为贵德盆地EGS的工作流体;(2)贵德盆地EGS工程参数最优组合为:注入流量59.48 kg/s,注入温度20.26℃和井间距379.95 m;(3)贵德盆地EGS能以2.28 M_(W)的平均发电功率及高于168℃的生产温度稳定运行50年,产出电量总计为1014 GWh,单位电量成本仅为0.052$/kWh,可减少温室气体排放量达0.34~1.18 Mt. 展开更多
关键词 贵德盆地 干热岩发电 超临界二氧化碳 对比分析 非支配排序遗传算法 多物理场耦合
原文传递
Multi-objective Evolutionary Algorithms for MILP and MINLP in Process Synthesis 被引量:7
12
作者 石磊 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期173-178,共6页
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes... Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis. 展开更多
关键词 multi-objective programming multi-objective evolutionary algorithm steady-state non-dominated sorting genetic algorithm process synthesis
在线阅读 下载PDF
Optimization of solar thermal power station LCOE based on NSGA-Ⅱ algorithm 被引量:3
13
作者 LI Xin-yang LU Xiao-juan DONG Hai-ying 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期1-8,共8页
In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied ... In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high. 展开更多
关键词 solar thermal power generation levelling cost of energy(LCOE) linear Fresnel non-dominated sorting genetic algorithm II(NSGA-II)
在线阅读 下载PDF
UAV Task Allocation for Hierarchical Multiobjective Optimization in Complex Conditions Using Modified NSGA-III with Segmented Encoding 被引量:1
14
作者 JIN Yudong FENG Jiabo ZHANG Weijun 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第4期431-445,共15页
With the recent boom in unmanned aerial vehicle (UAV) technology, many UAV applications involving complex and risky tasks in military and civilian fields have emerged, such as military strikes and disaster monitoring.... With the recent boom in unmanned aerial vehicle (UAV) technology, many UAV applications involving complex and risky tasks in military and civilian fields have emerged, such as military strikes and disaster monitoring. Task allocation for UAVs is the process of planning the division of work among UAVs, controlled from ground stations by human operators. This study formulates the UAV task-allocation problem as an extended traveling salesman problem and presents a novel UAV task-allocation model for complex air concentration monitoring tasks. Then, an optimized non-dominated sorting genetic algorithm III (NSGA-III) based on a twin-exclusion mechanism, hierarchical objective-domination operator, and segmented gene encoding (i.e., NSGA-III-TEHOD) is developed to solve complex task-allocation problems involving multiple UAVs, hierarchical objectives, obstacles, and ambient wind. The algorithm is tested in several simulations, and the results demonstrate that the new algorithm outperforms NSGA-III, non-dominated sorting genetic algorithm II (NSGA-II), and genetic algorithm (GA) in terms of efficiency of global convergence and early maturation prevention and is available for the hierarchical objective-optimization problems. 展开更多
关键词 unmanned aerial vehicle(UAV) task allocation non-dominated sorting genetic algorithm(NSGA) multiobjective optimization
原文传递
Models for Location Inventory Routing Problem of Cold Chain Logistics with NSGA-Ⅱ Algorithm 被引量:1
15
作者 郑建国 李康 伍大清 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期533-539,共7页
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location... In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem. 展开更多
关键词 cold chain logistics MULTI-OBJECTIVE location inventory routing problem(LIRP) non-dominated sorting in genetic algorithm Ⅱ(NSGA-Ⅱ)
在线阅读 下载PDF
Non-dominated sorting based multi-page photo collage
16
作者 Yu Song Fan Tang +1 位作者 Weiming Dong Changsheng Xu 《Computational Visual Media》 SCIE EI CSCD 2022年第2期199-212,共14页
The development of social networking services(SNSs)revealed a surge in image sharing.The sharing mode of multi-page photo collage(MPC),which posts several image collages at a time,can often be observed on many social ... The development of social networking services(SNSs)revealed a surge in image sharing.The sharing mode of multi-page photo collage(MPC),which posts several image collages at a time,can often be observed on many social network platforms,which enables uploading images and arrangement in a logical order.This study focuses on the construction of MPC for an image collection and its formulation as an issue of joint optimization,which involves not only the arrangement in a single collage but also the arrangement among different collages.Novel balance-aware measurements,which merge graphic features and psychological achievements,are introduced.Non-dominated sorting genetic algorithm is adopted to optimize the MPC guided by the measurements.Experiments demonstrate that the proposed method can lead to diverse,visually pleasant,and logically clear MPC results,which are comparable to manually designed MPC results. 展开更多
关键词 multi-page photo collage balance-aware measurements non-dominated sorting genetic algorithm
原文传递
Robust Optimization Method of Cylindrical Roller Bearing by Maximizing Dynamic Capacity Using Evolutionary Algorithms
17
作者 Kumar Gaurav Rajiv Tiwari Twinkle Mandawat 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第5期20-40,共21页
Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,h... Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,have a minimum possible value and do not exceed the upper limit of a desired range of percentage variation.Also,it checks the feasibility of design outcome in presence of manufacturing tolerances in design variables.For any rolling element bearing,a long life indicates a satisfactory performance.In the present study,the dynamic load carrying capacity C,which relates to fatigue life,has been optimized using the robust design.In roller bearings,boundary dimensions(i.e.,bearing outer diameter,bore diameter and width)are standard.Hence,the performance is mainly affected by the internal dimensions and not the bearing boundary dimensions mentioned formerly.In spite of this,besides internal dimensions and their tolerances,the tolerances in boundary dimensions have also been taken into consideration for the robust optimization.The problem has been solved with the elitist non-dominating sorting genetic algorithm(NSGA-II).Finally,for the visualization and to ensure manufacturability of CRB using obtained values,radial dimensions drawing of one of the optimized CRB has been made.To check the robustness of obtained design after optimization,a sensitivity analysis has also been carried out to find out how much the variation in the objective function will be in case of variation in optimized value of design variables.Optimized bearings have been found to have improved life as compared with standard ones. 展开更多
关键词 cylindrical roller bearing OPTIMIZATION robust design elitist non-dominating sorting genetic algorithm(NSGA-II) fatigue life dynamic load carrying capacity
在线阅读 下载PDF
A Multi-Objective Optimization for Locating Maintenance Stations and Operator Dispatching of Corrective Maintenance
18
作者 Chao-Lung Yang Melkamu Mengistnew Teshome +1 位作者 Yu-Zhen Yeh Tamrat Yifter Meles 《Computers, Materials & Continua》 SCIE EI 2024年第6期3519-3547,共29页
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t... In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical. 展开更多
关键词 Corrective maintenance multi-objective optimization non-dominated sorting genetic algorithm operator allocation maintenance station location
在线阅读 下载PDF
考虑交货期的双资源柔性作业车间节能调度 被引量:10
19
作者 张洪亮 徐静茹 +1 位作者 谈波 徐公杰 《系统仿真学报》 CAS CSCD 北大核心 2023年第4期734-746,共13页
为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sor... 为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sorting genetic algorithmⅡ,INSGA-Ⅱ)进行求解。针对所优化的目标,设计了一种三阶段解码方法以获得高质量的可行解;利用动态自适应交叉和变异算子以获得更多优良个体;改进拥挤距离以获得收敛性和分布性更优的种群。将INSGA-Ⅱ与多种多目标优化算法进行对比分析,实验结果表明所提算法可行且有效。 展开更多
关键词 双资源约束 柔性作业车间 提前/拖期惩罚 能耗 INSGA-Ⅱ(improved non-dominated sorting genetic algorithmⅡ)
原文传递
基于混合遗传蚁群算法的多目标FJSP问题研究 被引量:5
20
作者 赵小惠 卫艳芳 +3 位作者 赵雯 胡胜 王凯峰 倪奕棋 《组合机床与自动化加工技术》 北大核心 2023年第1期188-192,共5页
针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初... 针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初始信息素分布;其次,根据提出的自适应伪随机比例规则和改进的信息素更新规则来优化蚂蚁的遍历过程;最后,通过邻域搜索,扩大蚂蚁的搜索空间,从而提高解集的多样性。通过Kacem和BRdata算例进行实验验证,证明混合遗传蚁群算法具有更高的求解效率和更好解集多样性。 展开更多
关键词 柔性作业车间调度 多目标优化 NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ) 蚁群算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部