期刊文献+
共找到492,410篇文章
< 1 2 250 >
每页显示 20 50 100
Non-Covalent Functionalization of Graphene with Bisphenol A for High-Performance Supercapacitors
1
作者 Haixiong Hu Zhongai Hu +3 位作者 Xiaoying Ren Yuying Yang Ruibing Qiang Ning An Hongying Wu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2015年第2期199-206,共8页
The reduced graphene oxide(RGO)/bisphenol A(BPA)composites were prepared by an adsorption-reduction method.The composites are characterized by X-ray diffraction(XRD),UV-vis,thermogravimetric(TG)analysis,field emission... The reduced graphene oxide(RGO)/bisphenol A(BPA)composites were prepared by an adsorption-reduction method.The composites are characterized by X-ray diffraction(XRD),UV-vis,thermogravimetric(TG)analysis,field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM).The results confirm that BPA is adsorbed on the basal plane of RGO byπ-πstacking interaction.Furthermore,the electrochemical behaviors were evaluated by cyclic voltammetry,galvanostatic charge/discharge techniques and electrochemical impedance spectroscopy(EIS).The results show that the RGO/BPA nanocomposites exhibit ultrahigh specific capacitance of 466 F•g^(−1) at a current density of 1 A•g^(−1),excellent rate capability(more than 81%retention at 10 A•g^(−1) relative to 1 A•g^(−1))and superior cycling stability(90%capacitance decay after 4000 cycles).Consequently,the RGO/BPA nanocomposites can be regarded as promising electrode materials for supercapacitor applications. 展开更多
关键词 non-covalent functionalization electrochemical properties stacking interaction SUPERCAPACITOR
原文传递
Self-Activating Integrated Carbon-Based Air Cathodes With In Situ Oxygen Functionalization for Durable and High-Performance Metal-Air Batteries
2
作者 Funing Bian Yuexi Chen +3 位作者 Hongfei Zhang Junfang Cheng Shulin Gao Sujuan Hu 《Carbon Energy》 2026年第1期176-186,共11页
Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal ... Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal additives or complex multilayer configurations.To tackle these issues,this study devised a self-activated integrated carbon-based air cathode.By integrating in situ catalytic site construction with structural optimization,the strategy not only induces the formation of oxygen functional groups(─C─OH,─C═O,─COOH),hierarchical pores,and uniformly distributed active sites,but also establishes a favorable electronic and mass-transport environment.Furthermore,the roll-pressing-based integrated design streamlines electrode construction,reinforces interfacial bonding,and significantly enhances mechanical stability.Density functional theory(DFT)calculations show that oxygen functional groups initiate hydrogen bonding interaction and promote charge enrichment,which improves the activity of the cathode and facilitates intermediate adsorption/desorption in oxygen reduction and evolution reactions processes.As a result,the integrated air cathode-based rechargeable zinc-air batteries(RZABs)achieve a high specific capacity of 811 mAh g^(-1).It also performs well in quasi-solid-state RZABs and silicon-air batteries systems across a wide temperature range,demonstrating strong adaptability and application potential.This study provides a scalable and cost-effective design strategy for high-performance carbon-based air cathodes,offering new insights into advancing durable and practical metal-air energy systems. 展开更多
关键词 integrated air cathode metal-air batteries ORR/OER oxygen functional group engineering SELF-ACTIVATION
在线阅读 下载PDF
Machine Learning Density Functional Compatible with Dispersion Correction for Non-Covalent Interactions
3
作者 Yapeng Zhang Zipeng An +4 位作者 JingChun Wang Yao Wang Rui-Xue Xu GuanHua Chen Xiao Zheng 《Chinese Journal of Chemical Physics》 2025年第2期140-148,I0039,共10页
Machine learning(ML)has demon-strated significant potential in en-hancing the predictive capabilities of density functional theory methods.In this study,we develop an ML model for correcting B3LYP-D,a density function... Machine learning(ML)has demon-strated significant potential in en-hancing the predictive capabilities of density functional theory methods.In this study,we develop an ML model for correcting B3LYP-D,a density functional approximation that incorporates dispersion correc-tions for non-covalent interactions.This model utilizes semilocal elec-tron density descriptors,and is trained with accurate reference data for both relative and ab-solute energies.Extensive benchmark tests reveal that the ML correction substantially en-hances the generalization ability of the B3LYP-D functional,improving the predictions of at-omization and dissociation energies for complex molecular systems.It retains the accuracy of B3LYP-D in predicting reaction barrier heights and non-covalent interactions while enabling efficient,fully self-consistent field calculations.This work signifies a promising advancement in the development of ML-corrected functionals that surpass the performance of traditional B3LYP-D. 展开更多
关键词 Density functional theory Exchange-correlation functional Machine learning
在线阅读 下载PDF
Non-covalently Functionalized Graphene Oxide-Based Coating to Enhance Thermal Stability and Flame Retardancy of PVA Film 被引量:11
4
作者 Wenhua Chen Pengju Liu +4 位作者 Lizhen Min Yiming Zhou Yuan Liu Qi Wang Wenfeng Duan 《Nano-Micro Letters》 SCIE EI CAS 2018年第3期11-23,共13页
The synergistic effect of conventional flame-retardant elements and graphene has received extensive attention in the development of a new class of flame retardants. Compared to covalent modification, the noncovalent s... The synergistic effect of conventional flame-retardant elements and graphene has received extensive attention in the development of a new class of flame retardants. Compared to covalent modification, the noncovalent strategy is simpler and expeditious and entirely preserves the original quality of graphene. Thus, non-covalently functionalized graphene oxide(FGO) with a phosphorus–nitrogen compound was successfully prepared via a one-pot process in this study. Polyethyleneimine and FGO were alternatively deposited on the surface of a poly(vinyl alcohol)(PVA) film via layer-by-layer assembly driven by electrostatic interaction, imparting excellent flame retardancy to the coated PVA film. The multilayer FGO-based coating formed a protective shield encapsulating the PVA matrix, effectively blocking the transfer of heat and mass during combustion. The coated PVA has a higher initial decomposition temperature of about 260 °C and a nearly 60% reduction in total heat release than neat PVA does. Our results may have a promising prospect for flame-retardant polymers. 展开更多
关键词 Graphene non-covalent functionalization Layer-by-layer Flame retardant Poly(vinyl alcohol)(PVA)
在线阅读 下载PDF
Recent Advances toward Electro- and Electrophotochemical 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-Catalyzed C—H/C—F Bonds Functionalization
5
作者 Yongmei Li Liangbo Sun +1 位作者 Kun Xu Chengchu Zeng 《有机化学》 北大核心 2025年第2期668-676,共9页
2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a stoichiometric oxidant that is frequently used in traditional organic synthesis. Recently, the rapid development of organic electrochemistry has led to new advancem... 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is a stoichiometric oxidant that is frequently used in traditional organic synthesis. Recently, the rapid development of organic electrochemistry has led to new advancements in DDQ-catalyzed C—H bonds functionalization. Moreover, the challenging C—H functionalization of electron-deficient arenes has been achieved through the merger of electrochemical DDQ catalysis and photoirradiation. In addition, the synthetic utility of electrophotochemical DDQ catalysis was further demonstrated by the nucleophilic aromatic substitution (SNAr) reaction of unactivated aryl fluorides. The recent developments in electro- and electrophotochemical DDQ-catalyzed C—H/C—F func- tionalizations with attention to their strategies and mechanistic insights are summarized. It is hoped that this not only deepens the understanding of this field, but also helps relevant researchers expand the application scope of DDQ catalysis. 展开更多
关键词 2 3-dichloro-5 6-dicyano-1 4-benzoquinone(DDQ) electrocatalysis organic electrosynthesis electrophotocatalysis C-H functionalization C-F functionalization
原文传递
Application of Functional Group Migration Strategies in Photodriven Difunctionalization of Unsaturated Hydrocarbons
6
作者 He Chonglong Zhou Youkang +1 位作者 Duan Xinhua Liu Le 《有机化学》 北大核心 2025年第5期1478-1508,共31页
Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups in... Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups into the unsaturated bond in a single step,facilitating the efficient construction of complex molecular architectures,which has been widely utilized in material chemistry,pharmaceutical and fine chemical synthesis.Recently,significant progress has been made via free radical-mediated difunctionalization due to the extensive application of photocatalysis.However,highly selective difunc-tionalization reactions still remain challenging.The research progress of selective difunctionalization of unsaturated hydro-carbons using a free radical addition/functional group migration strategy over the past decade is summarized,and synthetic strategies and key reaction steps are systematically elaborated. 展开更多
关键词 visible-light-driven unsaturated hydrocarbon functional group migration difunctionalization
原文传递
Visible-Light-Mediated O-H Functionalization Reactions of Alkenyl Alcohols with Diazo Compounds
7
作者 Xie Haochi Qin Yongkang +6 位作者 Yang Ting Li Hujin Sun Jiajia Qian Mingcheng Zhao Shuai Hou Ya'nan Chen Xin 《有机化学》 北大核心 2025年第8期3004-3016,共13页
Visible-light-mediated O-H functionalization reactions of alcohols with diazo compounds have been fully developed in recent years.However,alkenyl and acetylenic alcohols were rarely examined in these reactions due to ... Visible-light-mediated O-H functionalization reactions of alcohols with diazo compounds have been fully developed in recent years.However,alkenyl and acetylenic alcohols were rarely examined in these reactions due to the inevitable side reactions involving cycloaddition.Herein,the visible-light-mediated O-H functionalization reactions of alkenyl alcohols with diazo compounds were developed.This process competed favorably with the cycloaddition reaction.A series of multifunctional ethers were provided in low to high yields with aryldiazoacetates or 3-diazooxindoles.Biologically relevant spirooxindole-fused oxacycle could be easily accessed from the O-H functionalization product of alkenyl alcohol and 3-diazooxindole. 展开更多
关键词 VISIBLE-LIGHT O-H functionalization alkenyl alcohol diazo compound spirooxindole-fused oxacycle
原文传递
Photostimulus-responsive Non-covalent Interactions in Polymers:A Review
8
作者 Phakamat Limarun Kwanchai Buaksuntear +11 位作者 Siriwan Jansrinak Ariya Julbust Saree Phongphanphanee Hassarutai Yangthong Supitta Suethao Pornsiri Kaewpradit Pairote Jittham Sedthawatt Sucharitpwatskul Karine Mougin Arnaud Spangenberg Antoine Le Duigou Wirasak Smitthipong 《Chinese Journal of Polymer Science》 2025年第5期677-694,共18页
This study reviews light-responsive polymers in various applications,including drug delivery,information storage,sensor,self-healing material,antibacterial or anti-fouling,and environmental applications.Light-responsi... This study reviews light-responsive polymers in various applications,including drug delivery,information storage,sensor,self-healing material,antibacterial or anti-fouling,and environmental applications.Light-responsive polymers are a new material type being developed for various medical,electronics,engineering,and environmental applications.The working principle of light-responsive materials is based on metalligand interactions or non-covalent interactions between polymer functional groups,metal ions,and other filler functional groups.Light irradiation causes physical and mechanical changes in drug delivery and antibacterial systems,which results in the materials releasing more drugs or antibacterial substances.When materials in information storage devices and sensors are exposed to light,they can change color or glow.This has been applied for data storage to reveal QR codes under UV light.Additionally,this review discusses the thermodynamic aspects and computer modeling of light-responsive materials to emphasize the importance and development of these materials.Finally,light-responsive polymer development for various applications is presented. 展开更多
关键词 Photostimulus-responsive materials non-covalent interactions THERMODYNAMICS Computer modeling Smart materials
原文传递
Transition Metal-Catalyzed Asymmetric Migratory Allylic C—H Functionalization of Remote Dienes
9
作者 Jingming Zhang Zhitao He 《有机化学》 北大核心 2025年第2期592-601,共10页
Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution o... Asymmetric allylic C—H functionalization is a valuable and challenging research area. Different from the conventional direct allylic C—H cleavage strategy, transition metal-catalyzed migratory allylic substitution of remote dienes has emerged as a new route to achieve allylic C—H functionalization enantioselectively. This review provides a detailed summary of the development and advance of this strategy, introduces the related mechanistic processes, and discusses the area based on the types of catalysts and products. 展开更多
关键词 remote dienes metal walking migratory allylic substitution allylic C-H bond functionalization asymmetric synthesis
原文传递
Unlocking the non-covalent electrostatic engineering of photocatalysts:from molecular interactions to multifield tuning strategies toward enhanced charge dynamics
10
作者 Rohit Kumar Monika Malhotra +7 位作者 Anita Sudhaik Pankaj Raizada Xuan-Cuong Luu Aftab Aslam Parwaz Khan Sourbh Thakur Tansir Ahamad Van-Huy Nguyen Pardeep Singh 《Advanced Powder Materials》 2025年第6期88-116,共29页
Photocatalysis is one of the most capable green energy techniques for sustainable solar-to-chemical energy conversion.However,the speedy recombination of photocarriers remains a critical bottleneck in achieving high p... Photocatalysis is one of the most capable green energy techniques for sustainable solar-to-chemical energy conversion.However,the speedy recombination of photocarriers remains a critical bottleneck in achieving high photocatalytic efficiency.Recent advancements have underscored the pivotal role of internal and external electrostatic fields in regulating charge dynamics within semiconductor systems.This review highlights the emerging strategy of employing non-covalent electrostatic interactions to modulate photocatalytic behavior.Internally,spontaneous polarization within polar or ferroelectric semiconductors facilitates efficient charge separation through built-in electric fields.Externally applied mechanical stress and magnetic fields further augment these effects via piezoelectric and magnetoelectric phenomena,offering dynamic control over carrier transport.Beyond macroscopic fields,subtle non-covalent electrostatic forces,such as hydrogen bonds,van der Waals forces,andπ-πstacking,significantly influence surface adsorption,electronic structure modulation,and interfacial charge transfer processes.Combining these external influences with semiconductor properties,we can develop innovative strategies to stabilize the reactive intermediates and reduce the recombination pathways,improving the practical implications of these synergistic effects in energy conversion and environmental remediation.This review systematically elucidates the mechanistic contributions of internal polarization and external fields to the modulation of non-covalent electrostatic forces in photocatalytic systems.Emphasis is placed on material design strategies that integrate structural polarity,field-responsive behavior,and interfacial engineering to achieve superior photocatalytic performance.Finally,the prospects of non-covalent electrostatic interactions in photocatalysis are discussed,providing insights to guide the rational development of more efficient and sustainable photocatalytic systems. 展开更多
关键词 Photocatalysis Electrostatic non-covalent forces Van der Waals interactions π-πstacking Hydrogen bonding Piezoelectric polarization Lorentz force effects
在线阅读 下载PDF
The Analysis of Gauss Radial Basis Functions and Its Application in Locating Olivine on the Moon
11
作者 SONG Shicang SONG Xiaoyuan SONG Shuhan 《应用数学》 北大核心 2026年第1期173-181,共9页
Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the m... Gauss radial basis functions(GRBF)are frequently employed in data fitting and machine learning.Their linear independence property can theoretically guarantee the avoidance of data redundancy.In this paper,one of the main contributions is proving this property using linear algebra instead of profound knowledge.This makes it easy to read and understand this fundamental fact.The proof of linear independence of a set of Gauss functions relies on the constructing method for one-dimensional space and on the deducing method for higher dimensions.Additionally,under the condition of preserving the same moments between the original function and interpolating function,both the interpolating existence and uniqueness are proven for GRBF in one-dimensional space.The final work demonstrates the application of the GRBF method to locate lunar olivine.By combining preprocessed data using GRBF with the removing envelope curve method,a program is created to find the position of lunar olivine based on spectrum data,and the numerical experiment shows that it is an effective scheme. 展开更多
关键词 Gauss function Radial basis function Machine learning Lunar olivine locating Data fitting
在线阅读 下载PDF
Depolymerization and Functionalization of Super Engineering Plastics
12
作者 Boning Gu Rui Huang +1 位作者 Yinsong Zhao Xuefeng Jiang 《Chinese Journal of Polymer Science》 2025年第6期876-886,I0006,共12页
Chemical recycling/upcycling of plastics has emerged as one of the most promising strategies for the plastic circular economy,enabling the depolymerization and functionalization of plastics into valuable monomers and ... Chemical recycling/upcycling of plastics has emerged as one of the most promising strategies for the plastic circular economy,enabling the depolymerization and functionalization of plastics into valuable monomers and chemicals.However,studies on the depolymerization and functionalization of challenging super engineering plastics have remained in early stage and underexplored.In this review,we would like to discuss the representative accomplishments and mechanism insights on chemical protocols achieved in depolymerization of super engineering plastics,especially for poly(phenylene sulfide)(PPS),poly(aryl ether)s including poly(ether ether ketone)(PEEK),polysulfone(PSU),polyphenylsulfone(PPSU)and polyethersulfone(PES).We anticipate that this review will provide an overall perspective on the current status and future trends of this emerging field. 展开更多
关键词 Super engineering plastics Chemical recycling/upcycling DEPOLYMERIZATION functionalization
原文传递
Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization
13
作者 Wei-Bin Li Xiao-Chao Huang +2 位作者 Pei Liu Jie Kong Guo-Ping Yang 《Chinese Chemical Letters》 2025年第6期68-77,共10页
The transition metal-catalyzed C–H activation have been considered as increasingly useful approach for installing new functional groups onto organic small molecules due to their high step-and atom-economy,the abundan... The transition metal-catalyzed C–H activation have been considered as increasingly useful approach for installing new functional groups onto organic small molecules due to their high step-and atom-economy,the abundance of hydrocarbon compounds,and the potential for late-stage functionalization of complex organic molecules.The ortho-and meta-C-H activation and functionalization of aromatic compounds have been widely explored in recent years,however the distal para-C-H activation and functionalization has remained a significant challenge because of the difficulty in forming energetically favorable metallacyclic transition states.The utilization of appropriate directing groups or templates as well as the meticulous design of catalysts and ligands has proven to be effective in transition-metal-catalyzed remote para-C-H bonds activation and functionalization of aromatic compounds.This review aims to summarize the strategies for controlling para-selective C–H functionalization using the directing group,template engineering,and catalyst/ligand design under transition metals catalysis in recent years. 展开更多
关键词 C-H activation Transition metal catalysis SELECTIVITY Remote functionalization Directing group
原文传递
Nicotinic Acid Activated Cp_(2)TiCl_(2) for Synergistic Catalysis of C-H Functionalization to Synthesize 2-(N-substituted amino)-1,4-Naphthoquinones
14
作者 WANG Yunyun MA Caixia WANG Tao 《分子催化(中英文)》 北大核心 2025年第5期472-482,I0005,共12页
Cp_(2)TiCl_(2) as a Lewis acid precursor and nicotinic acid as a ligand have been used synergistically for the one-pot synthesis of 2-(N-substituted amino)-1,4-naphthoquinones.This method establishes a general strateg... Cp_(2)TiCl_(2) as a Lewis acid precursor and nicotinic acid as a ligand have been used synergistically for the one-pot synthesis of 2-(N-substituted amino)-1,4-naphthoquinones.This method establishes a general strategy for the functionalization and conversion of C-H bonds of 1,4-naphthoquinones into C-N bonds,providing an effective route to synthesize 2-(N-substituted amino)-1,4-naphthoquinone with high yield under mild conditions.Additionally,the synergistic catalytic mechanism was investigated by 1H NMR titration experiments and LC-MS analysis,with experimental results sufficiently and consistently supporting the proposed mechanism of the catalytic cycle. 展开更多
关键词 C-H functionalization 2-(N-substituted amino)-1 4-naphthoquinone Cp_(2)TiCl_(2) synergistic catalysis
在线阅读 下载PDF
Recent Advancements in Biochar Functionalization from Crop Residues for a Green Future
15
作者 Omojola Awogbemi Daramy Vandi Von Kallon Ramesh CRay 《Journal of Renewable Materials》 2025年第11期2191-2233,共43页
Increased human and industrial activities have exacerbated the release of toxic materials and acute envi-ronmental pollution in recent times.Biochar,a carbon-rich material produced from biomass,is gaining momentum as ... Increased human and industrial activities have exacerbated the release of toxic materials and acute envi-ronmental pollution in recent times.Biochar,a carbon-rich material produced from biomass,is gaining momentum as a versatile material for attaining a sustainable environment.The study reviews the application of functionalized biochar for energy storage,environmental remediation,catalysis,and sustainable agriculture,aiming to achieve a greener future.Thedeployment of crop residues as a renewable feedstock for biochar,and their properties,compositions,modification,and functionalization techniques are also discussed.Additionally,the avenues for applying functionalized biochar to achieve a greener future,future trends and innovations,challenges,and future research directions are highlighted.Despite the limitations of scalability,ecotoxicological risks,logistical issues,lack of characterization protocols,high production costs,poor social acceptance,and inadequate policy and regulatory frameworks,functionalized biochar offers a better surface area,improved porosity,enhanced functional groups,and higher recoverability,leading to improved performance,adsorption capacity,biodegradability,and applications in specialized fields.Future research should prioritize standardization,scalability,cost reduction strategies,expansion of application areas,integration of emerging tools such as artificial intelligence and predictive modeling,and the development of policy and regulatory frameworks,ensuring that biochar’s full potential is harnessed effectively to support a low-carbon,resource-efficient future and global sustainability goals. 展开更多
关键词 functionalization techniques BIOCHAR crop residues adsorption capacity green future energy storage
在线阅读 下载PDF
Pd/Cu-cocatalyzed multi-site functionalization of in-situ generated alkenes toward carbazole-based aggregation-induced emission luminogens
16
作者 Meiqi Zhang Xueyuan Yan +8 位作者 Zheng Liu Hongyuan Bai Hongwei Ma Genping Huang Bo Zhang Dezhu Xu Wenjia Han Li Han Tenglong Guo 《Chinese Journal of Catalysis》 2025年第2期176-184,共9页
In contrast to the predominant mono or difunctionalization of alkenes,the multi-site functionalization of alkenes involving the synergistic formation of more than two new C–C or C–X bonds is much challenging,especia... In contrast to the predominant mono or difunctionalization of alkenes,the multi-site functionalization of alkenes involving the synergistic formation of more than two new C–C or C–X bonds is much challenging,especially for developing new reaction pathway to afford the functional heterocycle compounds with aggregation-induced emission(AIE)property has been rarely reported.In present work,the multi-site functionalization of in situ generated alkenes with indoles has been developed for the synthesis of diversely functionalized carbazoles through the synergistic construction of multiple C–C bonds and C=O bond.A proposed reaction sequence involving C–H alkenylation/radical oxygen atom transfer/Diels-Alder cycloaddition/dehydrogenative aromatization was supported by experiments and density functional theory calculations.Further derivative carbazole-linked-quinoxaline skeletons represent a class of AIEgens with acceptor-donor-acceptor configuration,which generated the desired twisted intramolecular charge transfer(TICT)AIE properties and could be used as fluorescent probes for detecting the micrometer-sized phase separation of polymer blends.The protocol provides a concise route for the synthesis and application of carbazole-based AIE luminogens. 展开更多
关键词 Multi-site functionalization CARBAZOLES Aggregation-induced emission luminogens Radical oxygen atom transfer Microphase separation
在线阅读 下载PDF
Microglia overexpressing brain-derived neurotrophic factor promote vascular repair and functional recovery in mice after spinal cord injury 被引量:2
17
作者 Fanzhuo Zeng Yuxin Li +6 位作者 Xiaoyu Li Xinyang Gu Yue Cao Shuai Cheng He Tian Rongcheng Mei Xifan Mei 《Neural Regeneration Research》 2026年第1期365-376,共12页
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s... Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury. 展开更多
关键词 ANGIOGENESIS apoptosis brain-derived neurotrophic factor colony stimulating factor 1 receptor inflammation MICROGLIA motor function spinal cord injury vascular endothelial growth factor
暂未订购
Non-covalent interactions between adsorbed·OH species and UiO-66-NH_(2)for methane hydroxylation
18
作者 Yun Zhou Geqian Fang +4 位作者 Haiyan Wang Wenjun Yu Chun Zhu Jin-Xia Liang Jian Lin 《Chinese Journal of Structural Chemistry》 2025年第8期34-43,共10页
UiO-66-H MOFs can effectively catalyze the direct selective oxidation of methane(DSOM)to high value-added oxygenates under mild conditions.However,UiO-66-NH_(2)with benzene-1,4-dicarboxylate(NH_(2)-BDC)ligand modifyin... UiO-66-H MOFs can effectively catalyze the direct selective oxidation of methane(DSOM)to high value-added oxygenates under mild conditions.However,UiO-66-NH_(2)with benzene-1,4-dicarboxylate(NH_(2)-BDC)ligand modifying the Zr-oxo nodes exhibits relatively inferior catalytic performance for DSOM.Here,a combination of density functional theory(DFT)calculations and experiments was employed to explore the underlying reasons for the limited catalytic activity of UiO-66-NH_(2).The results indicate that the methane hydroxylation performance of UiO-66-NH_(2)is almost unaffected by the increase of·OH concentration.This is attributed to the formation of substantial non-covalent hydrogen bonds between the oxygen atoms of oxygenic species on the Zr-oxo nodes and the hydrogen atoms of-NH_(2)groups,which diminishes the spin density distribution on the active sites of(·OH)m/UiO-66-NH_(2),leading to minimal change of the adsorption energy of CH_(4).Additionally,the calculated adsorption energies(Eads)of CH_(4)exhibit a linear relationship with the catalytic activity of UiO-66-NH_(2)for DSOM reaction. 展开更多
关键词 Metal-organic frameworks Density functional theory(DFT) Methane hydroxylation Hydrogen bond Spin density
原文传递
Photoelectric synergy induced synchronous functionalization of graphene and its applications in water splitting and desalination
19
作者 Limin Wang Feiyi Huang +9 位作者 Xinyi Liang Rajkumar Devasenathipathy Xiaotian Liu Qiulan Huang Zhongyun Yang Dujuan Huang Xinglan Peng Du-Hong Chen Youjun Fan Wei Chen 《Chinese Journal of Structural Chemistry》 2025年第2期25-33,共9页
Chemical functionalization of graphene is a topic of paramount importance to broaden its applications in chemistry,physics,and biological science but remains a great challenge due to its low chemical activity and poor... Chemical functionalization of graphene is a topic of paramount importance to broaden its applications in chemistry,physics,and biological science but remains a great challenge due to its low chemical activity and poor dispersion.Here,we report a strategy for the photosynergetic electrochemical functionalization of graphene(EFG).By using chloride ion(Cl^(-))as the intercalation anions and co-reactants,the electrogenerated radicals confined in the expanded graphite layers enable efficient radical addition reaction,thus grasping crystallineperfect EFG.We found that the ultraviolet irradiation and applied voltage have increased the surface/interface concentration of Cl,thus boosting the functionalization of graphene.Theoretical calculation and experimental results verified the oxygen evolution reaction(OER)on EFG has been improved by regulating the doping of chlorine atoms.In addition,the reduced interlayer distance and enhanced electrostatic repulsion near the basal plane endow the fabricated EFG-based membrane with high salt retention.This work highlights a method for the in situ functionalization of graphene and the subsequent applications in OER and water desalination. 展开更多
关键词 Synchronous functionalization of graphene PHOTOELECTROCHEMISTRY Confined spacing Radical addition reaction Water splitting and desalination
原文传递
Constructive Strategy of Amine Functionalization on Cu−In−Zn−S With N→Cu Coordination for Efficacious Photocatalytic Hydrogen Evolution
20
作者 Mengmeng Ma Runkang Lin +4 位作者 Kaige Huang Shizhong Yue Maohong Fan Zhijie Wang Shengchun Qu 《Carbon Energy》 2025年第10期162-173,共12页
Functionalization has emerged as a pivotal endeavor to tailor the surface properties of photocatalysts.We propose a facile amine functionalization strategy to establish a Cu−In−Zn−S(CIZS)/NiSx hybrid with covalent bon... Functionalization has emerged as a pivotal endeavor to tailor the surface properties of photocatalysts.We propose a facile amine functionalization strategy to establish a Cu−In−Zn−S(CIZS)/NiSx hybrid with covalent bonds using individual ethylenediamine(EDA)molecules.Our approach witnesses a remarkable photocatalytic hydrogen evolution(PHE)competence of 65.93 mmol g^(−1)h^(−1)driven by visible light,the highest value yielded by CIZS to date.X-ray absorption spectra of CIZS and density functional theory(DFT)calculations confirm the crucial amine N→Cu coordination after amine functionalization.The new emerging coordination via lone-pair electron donation profitably accesses the regulation of the coordination environment,electronic structures,and carrier behavior.Moreover,individual EDA molecule with two-terminal−NH2 group serves as a molecular bridge to hybrid CIZS and NiS_(x)cocatalyst via N→Cu and N→Ni coordination,favorably promoting efficient charge transport.This study provides advances in practical functionalizing photocatalysts. 展开更多
关键词 amine functionalization COORDINATION Cu−In−Zn−S molecular bridges photocatalytic hydrogen evolution
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部