期刊文献+
共找到215,317篇文章
< 1 2 250 >
每页显示 20 50 100
Potential mechanisms of non-coding RNA regulation in Alzheimer's disease 被引量:1
1
作者 Yue Sun Xinping Pang +5 位作者 Xudong Huang Dinglu Liu Jingyue Huang Pengtao Zheng Yanyu Wei Chaoyang Pang 《Neural Regeneration Research》 2026年第1期265-280,共16页
Alzheimer's disease,a progressively degenerative neurological disorder,is the most common cause of dementia in the elderly.While its precise etiology remains unclear,researchers have identified diverse pathologica... Alzheimer's disease,a progressively degenerative neurological disorder,is the most common cause of dementia in the elderly.While its precise etiology remains unclear,researchers have identified diverse pathological characteristics and molecular pathways associated with its progression.Advances in scientific research have increasingly highlighted the crucial role of non-coding RNAs in the progression of Alzheimer's disease.These non-coding RNAs regulate several biological processes critical to the advancement of the disease,offering promising potential as therapeutic targets and diagnostic biomarkers.Therefore,this review aims to investigate the underlying mechanisms of Alzheimer's disease onset,with a particular focus on microRNAs,long non-coding RNAs,and circular RNAs associated with the disease.The review elucidates the potential pathogenic processes of Alzheimer's disease and provides a detailed description of the synthesis mechanisms of the three aforementioned non-coding RNAs.It comprehensively summarizes the various non-coding RNAs that have been identified to play key regulatory roles in Alzheimer's disease,as well as how these noncoding RNAs influence the disease's progression by regulating gene expression and protein functions.For example,miR-9 targets the UBE4B gene,promoting autophagy-mediated degradation of Tau protein,thereby reducing Tau accumulation and delaying Alzheimer's disease progression.Conversely,the long non-coding RNA BACE1-AS stabilizes BACE1 mRNA,promoting the generation of amyloid-βand accelerating Alzheimer's disease development.Additionally,circular RNAs play significant roles in regulating neuroinflammatory responses.By integrating insights from these regulatory mechanisms,there is potential to discover new therapeutic targets and potential biomarkers for early detection and management of Alzheimer's disease.This review aims to enhance the understanding of the relationship between Alzheimer's disease and non-coding RNAs,potentially paving the way for early detection and novel treatment strategies. 展开更多
关键词 Alzheimer's disease biomarkers circular RNA long non-coding RNA MICRORNA ncRNA regulation NEURODEgeneRATION non-coding RNA PATHOgenesIS therapeutic targets
暂未订购
Novel insights into non-coding RNAs and their role in hydrocephalus
2
作者 Zhiyue Cui Jian He +8 位作者 An Li Junqiang Wang Yijian Yang Kaiyue Wang Zhikun Liu Qian Ouyang Zhangjie Su Pingsheng Hu Gelei Xiao 《Neural Regeneration Research》 2026年第2期636-647,共12页
A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation.This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiolog... A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation.This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus,one of the most common neurological conditions worldwide.In this review,we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition.Then,we outline the definition,classification,and biological role of non-coding RNAs.Subsequently,we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail.Specifically,we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus,including glymphatic pathways,neuroinflammatory processes,and neurological dysplasia,on the basis of the existing evidence.Lastly,we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments. 展开更多
关键词 HYDROCEPHALUS NEURODEVELOPMENT NEUROINFLAMMATION non-coding RNA therapeutic target
暂未订购
Behind the curtain of non-coding RNAs; long non-coding RNAs regulating hepatocarcinogenesis 被引量:9
3
作者 Aya El Khodiry Menna Afify Hend M El Tayebi 《World Journal of Gastroenterology》 SCIE CAS 2018年第5期549-572,共24页
Hepatocellular carcinoma(HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs(lncR... Hepatocellular carcinoma(HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs(lncRNAs) are RNAs with a length greater than 200 nucleotides that do not encode proteins. lncRNAs can regulate gene expression and protein synthesis in several ways by interacting with DNA, RNA and proteins in a sequence specific manner. They could regulate cellular and developmental processes through either gene inhibition or gene activation. Many studies have shown that dysregulation of lncRNAs is related to many human diseases such as cardiovascular diseases, genetic disorders, neurological diseases, immune mediated disorders and cancers. However, the study of lncRNAs is challenging as they are poorly conserved between species, their expression levels aren't as high as that of m RNAs and have great interpatient variations. The study of lncRNAs expression in cancers have been a breakthrough as it unveils potential biomarkers and drug targets for cancer therapy and helps understand the mechanism of pathogenesis. This review discusses many long non-coding RNAs and their contribution in HCC, their role in development, metastasis, and prognosis of HCC and how to regulate and target these lncRNAs as a therapeutic tool in HCC treatment in the future. 展开更多
关键词 tumor SUPPRESSOR genes ONCOgenes Long non-coding RNAS proliferation hepatocellular carcinoma metastasis
暂未订购
Emerging roles of non-coding RNAs in gastric cancer:Pathogenesis and clinical implications 被引量:8
4
作者 Shan-Shan Xie Juan Jin +2 位作者 Xiao Xu Wei Zhuo Tian-Hua Zhou 《World Journal of Gastroenterology》 SCIE CAS 2016年第3期1213-1223,共11页
Gastric cancer is a leading cause of cancer-related deaths. However, the mechanisms underlying gastric carcinogenesis remain largely unclear. The association of non-coding RNAs(nc RNAs) with cancer has been widely stu... Gastric cancer is a leading cause of cancer-related deaths. However, the mechanisms underlying gastric carcinogenesis remain largely unclear. The association of non-coding RNAs(nc RNAs) with cancer has been widely studied during the past decade. In general, nc RNAs have been classified as small nc RNAs, including micro RNAs(mi RNAs), and long non-coding RNAs(lnc RNAs). Emerging evidence shows that mi RNAs and lnc RNAs play key roles in the formation and progression of many cancers. In this review, we focus on the regulation of mi RNAs and lnc RNAs in gastric cancer. mi RNAs and lnc RNAs appear to be involved in gastric tumor growth, invasion, and metastasis and in establishment of the gastric tumor microenvironment through various mechanisms. Furthermore, we also discuss the possibilities of establishing mi RNAs and lnc RNAs as potential biomarkers and therapeutic targets for gastric cancer. Taken together, we summarize the emerging roles of nc RNAs in gastric cancer development and their possible clinical significance. 展开更多
关键词 microRNAs Long non-coding RNAS Gastriccancer Cancer INVASION METASTASIS
暂未订购
Tissue-specific differential expression of novel genes and long intergenic non-coding RNAs in humans with extreme response to evoked endotoxemia 被引量:3
5
作者 Yuanfeng Gao 《中国循环杂志》 CSCD 北大核心 2018年第S01期125-125,共1页
Objective Cytokine responses to activation of innate immunity differ between individuals,yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypot... Objective Cytokine responses to activation of innate immunity differ between individuals,yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypothesized that tissue-specific mRNA and long intergenic non-coding RNA (lincRNA) induction differs between individuals with divergent evoked inflammatory responses. 展开更多
关键词 INNATE individuals TISSUE-SPECIFIC mRNA LONG INTERGENIC non-coding RNA(lincRNA)
暂未订购
Role of non-coding RNAs in pathogenesis of gastrointestinal stromal tumors
6
作者 Ioannis K Stefanou Maria Gazouli +1 位作者 Georgios C Zografos Konstantinos G Toutouzas 《World Journal of Meta-Analysis》 2020年第3期233-244,共12页
Gastrointestinal stromal tumors(GISTs)are considered the model solid malignancies of targeted therapy after the discovery of imatinib effectiveness against their tyrosine kinase inhibitors.Non-coding RNAs are molecule... Gastrointestinal stromal tumors(GISTs)are considered the model solid malignancies of targeted therapy after the discovery of imatinib effectiveness against their tyrosine kinase inhibitors.Non-coding RNAs are molecules with no protein coding capacity that play crucial role to several biological steps of normal cell proliferation and differentiation.When the expression of these molecules found to be altered it seems that they affect the process of carcinogenesis in multiple ways,such as proliferation,apoptosis,differentiation,metastasis,and drug resistance.This review aims to provide an overview of the latest research papers and summarize the current evidence about the role of non-coding RNAs in pathogenesis of GISTs,including their potential clinical applications. 展开更多
关键词 Gastrointestinal stromal tumors non-coding RNA MICRORNA TRANSCRIPTOMICS BIOMARKER Long non-coding RNAs
暂未订购
Genetic variation may play a crucial role in non-coding RNA biogenesis
7
作者 Jeyalakshmi Kandhavelu Meenakshisundaram Kandhavelu 《American Journal of Molecular Biology》 2012年第4期386-389,共4页
Transcription, post-transcriptional modification, translation, post-translational modification, DNA replication, and signaling interaction of intra- and extra- cellular components are the relevant mechanisms in gene r... Transcription, post-transcriptional modification, translation, post-translational modification, DNA replication, and signaling interaction of intra- and extra- cellular components are the relevant mechanisms in gene regulation. Transcription is one of the most important mechanisms in the control of gene expression. Further, post-transcriptional modifications play a crucial role after transcription which determine whether the transcribed gene is coding or non-coding RNA (ncRNAs). Genome-wide analysis of RNAs provides information about the coding RNAs, whereas the status of ncRNAs are still at large and must be discussed in detail as variations in the ncRNAs can lead to different phenotypes. In this short article, we discuss the role of genetic variation in ncRNA genes and how this variation may play a crucial role in ncRNA biogenesis that eventually leads to phenotypic variation and thus speciation. 展开更多
关键词 GENOME Wide Analysis Bioinformatics genetic Variation non-coding RNA BIOgenesIS RNA Structure SPECIATION
暂未订购
Expressions of Long Non-Coding RNAs in Carcinogenesis of Cervix: A Review
8
作者 Shrestha Reshies Min-Min Yu 《Open Journal of Obstetrics and Gynecology》 2018年第2期130-145,共16页
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides mostly transcribed by RNA which do not encode proteins. Previously, lncRNAs were considered transcriptional byproducts called “junk DNA” wit... Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides mostly transcribed by RNA which do not encode proteins. Previously, lncRNAs were considered transcriptional byproducts called “junk DNA” with no biological functions. There are many studies conducted on lncRNAs showing they are actively involved in regulation of epigenetic, transcriptional, and post-transcriptional events. Expressions of lncRNAs are more different in many malignant tumors than in benign tumors and normal tissue. Aberration of lncRNAs is responsible to promote or suppress tumorigenesis and cancer progression. Under different circumstances, lncRNAs exhibit their roles in carcinogenesis such as MALAT1 is responsible for intervening mRNA instability, HOTAIR, MALAT1, ANRIL, PVT1 links with miRNA and histonemodifying complexes, MEG3 associates with miRNA, CCAT2, MEG3, GAS5, UCA1 allies with c-Myc or P53 causing suppression of tumor or oncogenesis. Abnormal expressions of lncRNAs are noticed in gynecological cancers, such as cervical cancer, ovarian cancer, and endometrial cancer. Identification of cervical cancer associated lncRNAs is necessary to understand the molecular biogenesis of cancers. In this review, we summarized the foundation and function of the lncRNAs in terms of tumor progression, invasion, prognosis, apoptosis, metastasis, and chemo-resistance. This review will provide references to determine the clinical applications of lncRNAs as ideal diagnostic biomarkers or therapeutic targets in cervical cancers. 展开更多
关键词 lncRNAs Long non-coding RNAS CERVICAL Cancer HPV HOTAIR MALAT-1 GAS5 MEG3 PVT1 HULC ANRIL CCHE1 CCAT2 UCA1
暂未订购
Non-coding RNAs in acute ischemic stroke:from brain to periphery 被引量:1
9
作者 Shuo Li Zhaohan Xu +7 位作者 Shiyao Zhang Huiling Sun Xiaodan Qin Lin Zhu Teng Jiang Junshan Zhou Fuling Yan Qiwen Deng 《Neural Regeneration Research》 SCIE CAS 2025年第1期116-129,共14页
Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic ... Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined.With innovations in high-throughput gene sequencing analysis,many aberrantly expressed non-coding RNAs(ncRNAs)in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models.Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes,leading to neuroprotection or deterioration,thus ncRNAs can serve as therapeutic targets in acute ischemic stroke.Moreover,distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.In particular,ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke.In this review,we consolidate the latest progress of research into the roles of ncRNAs(microRNAs,long ncRNAs,and circular RNAs)in the pathological processes of acute ischemic stroke–induced brain damage,as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke. 展开更多
关键词 acute ischemic stroke apoptosis blood–brain barrier damage circular RNAs excitatory toxicity long non-coding RNAs MICRORNAS NEUROINFLAMMATION non-coding RNAs oxidative stress
暂未订购
New insights of Helicobacter pylori host-pathogen interactions: The triangle of virulence factors, epigenetic modifications and non-coding RNAs 被引量:17
10
作者 Farzam Vaziri Samira Tarashi +1 位作者 Abolfazl Fateh Seyed Davar Siadat 《World Journal of Clinical Cases》 SCIE 2018年第5期64-73,共10页
Helicobacter pylori(H. pylori) is a model organism for understanding host-pathogen interactions and infection-mediated carcinogenesis. Gastric cancer and H. pylori colonization indicates the strong correlation. The pr... Helicobacter pylori(H. pylori) is a model organism for understanding host-pathogen interactions and infection-mediated carcinogenesis. Gastric cancer and H. pylori colonization indicates the strong correlation. The progression and exacerbation of H. pylori infection are influenced by some factors of pathogen and host. Several virulence factors involved in the proper adherence and attenuation of immune defense to contribute the risk of emerging gastric cancer, therefore analysis of them is very important. H. pylori also modulates inflammatory and autophagy process to intensify its pathogenicity. From the host regard, different genetic factors particularly affect the development of gastric cancer. Indeed, epigenetic modifications, Micro RNA and long non-coding RNA received more attention. Generally, various factors related to pathogen and host that modulate gastric cancer development in response to H. pylori need more attention due to develop an efficacious therapeutic intervention. Therefore, this paper will present a brief overview of host-pathogen interaction especially emphases on bacterial virulence factors, interruption of host cellular signaling, the role of epigenetic modifications and non-coding RNAs. 展开更多
关键词 HELICOBACTER PYLORI EPIgeneTIC VIRULENCE factor non-coding RNAS Host pathogen interactions
暂未订购
Non-coding RNAs and other determinants of neuroinflammation and endothelial dysfunction:regulation of gene expression in the acute phase of ischemic stroke and possible therapeutic applications 被引量:12
11
作者 Mario Daidone Marco Cataldi +1 位作者 Antonio Pinto Antonino Tuttolomondo 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第11期2154-2158,共5页
Ischemic stroke occurs under a variety of clinical conditions and has different pathogeneses,resulting in necrosis of brain parenchyma.Stroke pathogenesis is characterized by neuroinflammation and endothelial dysfunct... Ischemic stroke occurs under a variety of clinical conditions and has different pathogeneses,resulting in necrosis of brain parenchyma.Stroke pathogenesis is characterized by neuroinflammation and endothelial dysfunction.Some of the main processes triggered in the early stages of ischemic damage are the rapid activation of resident inflammatory cells(microglia,astrocytes and endothelial cells),inflammatory cytokines,and translocation of intercellular nuclear factors.Inflammation in stroke includes all the processes mentioned above,and it consists of either protective or detrimental effects concerning the“polarization”of these processes.This polarization comes out from the interaction of all the molecular pathways that regulate genome expression:the epigenetic factors.In recent years,new regulation mechanisms have been cleared,and these include non-coding RNAs,adenosine receptors,and the activity of mesenchymal stem/stromal cells and microglia.We reviewed how long non-coding RNA and microRNA have emerged as an essential mediator of some neurological diseases.We also clarified that their roles in cerebral ischemic injury may provide novel targets for the treatment of ischemic stroke.To date,we do not have adequate tools to control pathophysiological processes associated with stroke.Our goal is to review the role of non-coding RNAs and innate immune cells(such as microglia and mesenchymal stem/stromal cells)and the possible therapeutic effects of their modulation in patients with acute ischemic stroke.A better understanding of the mechanisms that influence the“polarization”of the inflammatory response after the acute event seems to be the way to change the natural history of the disease. 展开更多
关键词 acute phase cerebrovascular disease endothelial dysfunction EPIgeneTICS genetics neuroiflammation non-coding RNAs STROKE
暂未订购
Targeting long non-coding RNA MALAT1 alleviates retinal neurodegeneration in diabetic mice 被引量:5
12
作者 Yu-Lan Zhang Han-Ying Hu +2 位作者 Zhi-Peng You Bing-Yang Li Ke Shi 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2020年第2期213-219,共7页
●AIM:To observe the effect of inhibiting long non-coding RNA(lncRNA)metastasis-associated lung adenocarcinoma transcript 1(MALAT1)on diabetic neurodegeneration.●METHODS:Thirty-six 8-week-old C57 BL/6 mice were rando... ●AIM:To observe the effect of inhibiting long non-coding RNA(lncRNA)metastasis-associated lung adenocarcinoma transcript 1(MALAT1)on diabetic neurodegeneration.●METHODS:Thirty-six 8-week-old C57 BL/6 mice were randomly divided into normal control,diabetic control,diabetic scrambled small interfering RNAs(siRNAs)and diabetic MALAT1-siRNA groups.After diabetic induction with streptozocin intraperitoneally-injection,the diabetic M A L AT 1-s i R N A g ro u p w a s i n t r av i t r e a l l y i n j e c te d with 1μL 20μmol/L MALAT1 siRNA,and the diabetic scrambled siRNA group was injected with the same amount of scrambled siRNA.Electroretinography was performed to examine photoreceptor functions 16 wk after diabetes induction.MALAT1 expression was detected via real time polymerase chain reaction.Cone morphological changes were examined using immunofluorescence.Rod morphological changes were examined by determining outer nuclear layer(ONL)thickness.●RESULTS:The upregulation of retinal MALAT1 expression was detected in the diabetic control mice,while MALAT1 expression in the diabetic MALAT1-siRNA mice was decreased by 91.48%compared to diabetic control mice.The diabetic MALAT1-siRNA and diabetic control mice showed lower a-wave and b-wave amplitudes than did the normal control mice in scotopic and photopic electroretinogram,while the diabetic MALAT1-siRNA mice showed higher amplitudes than diabetic control mice.Morphological examination revealed that ONL thickness in the diabetic MALAT1-siRNA and diabetic control mice was lower than normal control mice.However,ONL thickness was greater in the diabetic MALAT1-siRNA mice than diabetic control mice.Moreover,the diabetic control mice performed a sparser cone cell arrangement and shorter outer segment morphology than diabetic MALAT1-siRNA mice.●CONCLUSION:Inhibiting retinal MALAT1 results in mitigative effects on the retinal photoreceptors,thus alleviating diabetic neurodegeneration. 展开更多
关键词 long non-coding RNA MALAT1 small interfering RNA DIABETIC RETINOPATHY NEURODEgeneRATION
原文传递
Discovery and characterization of the first non-coding RNA that regulates gene expression,micF RNA:A historical perspective 被引量:2
13
作者 Nicholas Delihas 《World Journal of Biological Chemistry》 CAS 2015年第4期272-280,共9页
The first evidence that RNA can function as a regulator of gene expression came from experiments with prokaryotes in the 1980 s. It was shown that Escherichia coli micF isan independent gene,has its own promoter,and e... The first evidence that RNA can function as a regulator of gene expression came from experiments with prokaryotes in the 1980 s. It was shown that Escherichia coli micF isan independent gene,has its own promoter,and encodes a small non-coding RNA that base pairs with and inhibits translation of a target messenger RNA in response to environmental stress conditions. The mic F RNA was isolated,sequenced and shown to be a primary transcript. In vitro experiments showed binding to the target ompF mR NA. Secondary structure probing revealed an imperfect micF RNA/ompF RNA duplex interaction and the presence of a non-canonical base pair. Several transcription factors,including OmpR,regulate micF transcription in response to environmental factors. micF has also been found in other bacterial species,however,recently Gerhart Wagner and J?rg Vogel showed pleiotropic effects and found micF inhibits expression of multiple target mR NAs; importantly,one is the global regulatory gene lrp. In addition,micF RNA was found to interact with its targets in different ways; it either inhibits ribosome binding or induces degradation of the message. Thus the concept and initial experimental evidence that RNA can regulate gene expression was born with prokaryotes. 展开更多
关键词 non-coding RNAS RNA/RNA interaction REGULATION of
在线阅读 下载PDF
RNA-seq analysis of mitochondria-related genes regulated by AMPK in the human trophoblast cell line BeWo 被引量:1
14
作者 Bin Wu Albert Gao +4 位作者 Bin He Yun Chen Xiangfeng Kong Fayuan Wen Haijun Gao 《Animal Models and Experimental Medicine》 2025年第4期649-661,共13页
Background:How AMP activated protein kinase(AMPK)signaling regulates mito-chondrial functions and mitophagy in human trophoblast cells remains unclear.This study was designed to investigate potential players mediating... Background:How AMP activated protein kinase(AMPK)signaling regulates mito-chondrial functions and mitophagy in human trophoblast cells remains unclear.This study was designed to investigate potential players mediating the regulation of AMPK on mitochondrial functions and mitophagy by next generation RNA-seq.Methods:We compared ATP production in protein kinase AMP-activated catalytic subunit alpha 1/2(PRKAA1/2)knockdown(AKD)and control BeWo cells using the Seahorse real-time ATP rate test,then analyzed gene expression profiling by RNA-seq.Differentially expressed genes(DEG)were examined by Gene Ontology(GO)analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment.Then protein-protein interactions(PPI)among mitochondria related genes were fur-ther analyzed using Metascape and Ingenuity Pathway Analysis(IPA)software.Results:Both mitochondrial and glycolytic ATP production in AKD cells were lower than in the control BeWo cells(CT),with a greater reduction of mitochondrial ATP production.A total of 1092 DEGs were identified,with 405 upregulated and 687 downregulated.GO analysis identified 60 genes associated with the term‘mitochon-drion’in the cellular component domain.PPI analysis identified three clusters of mito-chondria related genes,including aldo-keto reductase family 1 member B10 and B15(AKR1B10,AKR1B15),alanyl-tRNA synthetase 1(AARS1),mitochondrial ribosomal protein S6(MRPS6),mitochondrial calcium uniporter dominant negative subunit beta(MCUB)and dihydrolipoamide branched chain transacylase E2(DBT).Conclusions:In summary,this study identified multiple mitochondria related genes regulated by AMPK in BeWo cells,and among them,three clusters of genes may po-tentially contribute to altered mitochondrial functions in response to reduced AMPK signaling. 展开更多
关键词 AMPK ATP production gene expression MITOCHONDRIA RNA-SEQ TROPHOBLAST
暂未订购
Fat mass and obesity-associated protein in mesenchymal stem cells inhibits osteoclastogenesis via lnc NORAD/miR-4284 axis in ankylosing spondylitis 被引量:1
15
作者 Wen-Jie Liu Jia-Xin Wang +9 位作者 Quan-Feng Li Yun-Hui Zhang Peng-Fei Ji Jia-Hao Jin Yi-Bin Zhang Zi-Hao Yuan Pei Feng Yan-Feng Wu Hui-Yong Shen Peng Wang 《World Journal of Stem Cells》 2025年第3期28-43,共16页
BACKGROUND Ankylosing spondylitis(AS)is recognized as a long-term inflammatory disorder that leads to inflammation in the spine and joints,alongside abnormal bone growth.In previous studies,we reported that mesenchyma... BACKGROUND Ankylosing spondylitis(AS)is recognized as a long-term inflammatory disorder that leads to inflammation in the spine and joints,alongside abnormal bone growth.In previous studies,we reported that mesenchymal stem cells(MSCs)derived from individuals with AS demonstrated a remarkable inhibition in the formation of osteoclasts compared to those obtained from healthy donors.The mechanism through which MSCs from AS patients achieve this inhibition remains unclear.AIM To investigate the potential underlying mechanism by which MSCs from individuals with ankylosing spondylitis(AS-MSCs)inhibit osteoclastogenesis.METHODS We analysed fat mass and obesity-associated(FTO)protein levels in AS-MSCs and MSCs from healthy donors and investigated the effects and mechanism by which FTO in MSCs inhibits osteoclastogenesis by coculturing and measuring the levels of tartrate-resistant acid phosphatase,nuclear factor of activated T cells 1 and cathepsin K.RESULTS We found that FTO,an enzyme responsible for removing methyl groups from RNA,was more abundantly expressed in MSCs from AS patients than in those from healthy donors.Reducing FTO levels was shown to diminish the capacity of MSCs to inhibit osteoclast development.Further experimental results revealed that FTO affects the stability of the long non-coding RNA activated by DNA damage(NORAD)by altering its N6-methyladenosine methylation status.Deactivating NORAD in MSCs significantly increased osteoclast formation by affecting miR-4284,which could regulate the MSC-mediated inhibition of osteoclastogenesis reported in our previous research.CONCLUSION This study revealed elevated FTO levels in AS-MSCs and found that FTO regulated the ability of AS-MSCs to inhibit osteoclast formation through the long noncoding RNA NORAD/miR-4284 axis. 展开更多
关键词 Ankylosing spondylitis Mesenchymal stem cells OSTEOCLASTOgenesIS Fat mass and obesity-associated protein non-coding RNA activated by DNA damage
暂未订购
Long Non-coding RNA ANRIL in Gene Regulation and Its Duality in Atherosclerosis 被引量:3
16
作者 池洁珊 李鉴洲 +3 位作者 贾静静 张婷 刘小马 易黎 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期816-822,共7页
The antisense transcript long non-coding RNA(lnc RNA)(antisense non-coding RNA in the INK4 locus, ANRIL) is an antisense of the cyclin-dependent kinase inhibitor 2 B(CDKN2B) gene on chromosome 9 p21 that contain... The antisense transcript long non-coding RNA(lnc RNA)(antisense non-coding RNA in the INK4 locus, ANRIL) is an antisense of the cyclin-dependent kinase inhibitor 2 B(CDKN2B) gene on chromosome 9 p21 that contains an overlapping 299-bp region and shares a bidirectional promoter with alternate open reading frame(ARF). In the context of gene regulation, ANRIL is responsible for directly recruiting polycomb group(Pc G) proteins, including polycomb repressive complex-1(PRC-1) and polycomb repressive complex-2(PRC-2), to modify the epigenetic chromatin state and subsequently inhibit gene expression in cis-regulation. On the other hand, previous reports have indicated that ANRIL is capable of binding to a specific site or sequence, including the Alu element, E2 F transcription factor 1(E2F1), and CCCTC-binding factor(CTCF), to achieve trans-regulation functions. In addition to its function in cell proliferation, adhesion and apoptosis, ANRIL is very closely associated with atherosclerosis-related diseases. The different transcripts and the SNPs that are related to atherosclerotic vascular diseases(ASVD-SNPs) are inextricably linked to the development and progression of atherosclerosis. Linear transcripts have been shown to be a risk factor for atherosclerosis, whereas circular transcripts are protective against atherosclerosis. Furthermore, ANRIL also acts as a component of the inflammatory pathway involved in the regulation of inflammation, which is considered to be one of the causes of atherosclerosis. Collectively, ANRIL plays an important role in the formation of atherosclerosis, and the artificial modification of ANRIL transcripts should be considered following the development of this disease. 展开更多
关键词 ANRIL atherosclerosis gene regulation duality
暂未订购
A Genome-wide association study identifies candidate genes for heat tolerance in adult cucumber plants 被引量:1
17
作者 Zaizhan Wang Shaoyun Dong +9 位作者 Yanyan Liu Diane M.Beckles Caixia Li Jianan Han Yi Zhang Xiaoping Liu Jiantao Guan Xingfang Gu Han Miao Shengping Zhang 《Horticultural Plant Journal》 2025年第2期774-787,共14页
Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in... Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in cucumber have been identified.Here,the heat injury indices of 88 cucumber accessions representing diverse ecotypes were collected in two open-field environments,with naturally occurring high temperatures over two years.Seventeen of the 88 accessions were identified as highly heat-tolerant.Using a genome-wide association study,five loci(gHII3.1,gHII3.2,gHII3.3,gHII4.1 and gHII6.1)on three chromosomes associated with heat tolerance were detected.Pairwise linkage disequilibrium correlation,sequence polymorphisms,and qRT-PCR analyses at these loci,identified five candidate genes predicted to be casual for heat stress response in cucumber.CsaV3_3G04883,CsaV3_4G029050 and CsaV3_6G005370 each had nonsynonymous SNPs,and were significantly up-regulated by heat stress in the heat-tolerant genotypes.CsaV3_3G031890 was also induced by heat stress,but in the heatsensitive genotypes,and sequence polymorphism was only found in the promoter region.Identifying these candidate genes lays a foundation for understanding cucumber thermotolerance mechanisms.Our study is one of the few to examine heat stress in adult cucumber plants and it therefore fills a critical gap in knowledge.It is also an important first-step towards accelerating the breeding of robust heat-tolerant varieties. 展开更多
关键词 Cucumis sativus L. Heat tolerance GWAS Candidate gene analysis
在线阅读 下载PDF
The photo-based treatment technology simultaneously removes resistant bacteria and resistant genes from wastewater 被引量:1
18
作者 Zicong Guo Xiang Tang +8 位作者 Wenjun Wang Zhangxiong Luo Yuxi Zeng Nan Zhou Zhigang Yu Dongbo Wang Biao Song Chengyun Zhou Weiping Xiong 《Journal of Environmental Sciences》 2025年第2期243-262,共20页
Because of the recent widespread usage of antibiotics,the acquisition and dissemination of antibiotic-resistance genes(ARGs)were prevalent in the majority of habitats.Generally,the biological wastewater treatment proc... Because of the recent widespread usage of antibiotics,the acquisition and dissemination of antibiotic-resistance genes(ARGs)were prevalent in the majority of habitats.Generally,the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria(ARB)disinfection and ARGs degradation and even promote the proliferation of ARGs.Problematically,ARB and ARGs in effluent pose potential risks if they are not further treated.Photocatalytic oxidation is considered a promising disinfection technology,where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid(DNA)for ARB elimination and subsequent degradation of ARGs.This reviewaims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant(AR)from wastewater in recent years.We discuss the sources and transfer of ARGs in wastewater.The overall removal efficiencies of ultraviolet radiation(UV)/chlorination,UV/ozone,UV/H_(2)O_(2),and UV/sulfate-radical based system for ARB and ARGs,as well as the experimental parameters and removal mechanisms,are systematically discussed.The contribution of photocatalytic materials based on TiO_(2) and g-C_(3)N_(4) to the inactivation of ARB and degradation of ARGs is highlighted,producingmany free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer(HGT)in wastewater.Finally,based on the reviewed studies,future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges. 展开更多
关键词 Antibiotics resistant genes Antibiotics resistant bacteria Photocatalytic oxidation
原文传递
Genome-wide identification of ARID-HMG related genes in citrus and functional analysis of FhARID1 in apomixis and axillary bud development 被引量:1
19
作者 Xietian Song Yin Zhou +6 位作者 Zhen Cao Nan Wang Xiaoyu Tian Lijun Chai Zongzhou Xie Junli Ye Xiuxin Deng 《Horticultural Plant Journal》 2025年第3期999-1011,共13页
Polyembryony has posed a significant impediment to the advancement of citrus hybrid breeding.FhRWP is widely regarded as a pivotal factor governing asexual reproduction in citrus,and prior research has demonstrated th... Polyembryony has posed a significant impediment to the advancement of citrus hybrid breeding.FhRWP is widely regarded as a pivotal factor governing asexual reproduction in citrus,and prior research has demonstrated that FhARID1,acting as an upstream regulator,modulates FhRWP expression.In this study,we performed a genome-wide characterization of the ARID-HMG-related genes using the short juvenile minicitrus Fortunella hindsii.A total of 20 ARID-HMG-related genes were identified.Protein interaction network and enrichment analysis suggested that ARID-HMG-related proteins might might be involved in chromatin remodeling complexes.Knockout of FhARID1 in F.hindsii did not induce the conversion from polyembryony to monoembryony.However,fharid1 plants in T1 generation exhibited abnormal proliferation at axillary buds,which is similar to phenotype of fhrwp plants.Expression analysis of fharid1 ovary tissues revealed the downregulation of FhRWP.The results indicated that FhARID1,as an upstream regulator of FhRWP,has an effect on the development of citrus axillary buds.Expression analysis of overexpressed leaves of FhARID1 lines showed that no significant up-regulation of FhRWP,indicating that FhARID1 is not the sole upstream regulatory factor of FhRWP.Only FhARID2 showed a correlation in expression with FhARID1 among the ARID-related genes,further supporting the notion that this gene may be involved in complex formation rather than acting alone.Yeast two-hybrid and MS/MS spectra further indicated that FhARID1 function requires casein kinase II-mediated post-transcriptional phosphorylation.This study elucidated the function of FhARID1 in citrus apomixis and axillary bud development,providing a fundamental basis for understanding the role of ARID-HMG-related genes. 展开更多
关键词 CITRUS Fortunella hindsii FhARID1 ARID-HMG-related gene Casein Kinase II Chromatin remodeling
在线阅读 下载PDF
Effects of reductive soil disinfestation on potential pathogens and antibiotic resistance genes in soil 被引量:2
20
作者 Huijuan Duan Yue Yin +5 位作者 Yifei Wang Zhelun Liu Tiangui Cai Dong Zhu Chun Chen Guilan Duan 《Journal of Environmental Sciences》 2025年第4期373-384,共12页
Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dyn... Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil. 展开更多
关键词 Reductive soil disinfestation(RSD) Antibiotic resistance genes(ARGs) Bacterial communities Farmland soil Potential pathogens
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部