期刊文献+
共找到71,582篇文章
< 1 2 250 >
每页显示 20 50 100
Local edge direction based non-local means for image denoising 被引量:3
1
作者 JIA Li-na JIAO Feng-yuan +1 位作者 LIU Rui-qiang GUI Zhi-guo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第3期236-240,共5页
Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhoo... Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhood. In the CNLM algorithm, the differences between the pixel value and the distance of the pixel to the center are both taken into consideration to calculate the weighting coefficients. However, the Gaussian kernel cannot reflect the information of edge and structure due to its isotropy, and it has poor performance in flat regions. In this paper, an improved non-local means algorithm based on local edge direction is presented for image denoising. In edge and structure regions, the steering kernel regression (SKR) coefficients are used to calculate the weights, and in flat regions the average kernel is used. Experiments show that the proposed algorithm can effectively protect edge and structure while removing noises better when compared with the CNLM algorithm. 展开更多
关键词 image denoising neighborhood filter non-local means (NLM) steering kernel regression (SKR)
在线阅读 下载PDF
基于Non-Local means滤波的雾天降质图像恢复算法 被引量:2
2
作者 胡正平 荀娜娜 《四川兵工学报》 CAS 2010年第11期116-120,共5页
针对目前去雾算法易导致边缘晕环效应、边缘轮廓及景物特征比较模糊问题,提出了一种景深等先验信息未知条件下基于Non-Local means滤波的雾天降质图像恢复算法。首先,根据大气散射模型将经典的场景深度估计转化为大气面纱以及天空亮度估... 针对目前去雾算法易导致边缘晕环效应、边缘轮廓及景物特征比较模糊问题,提出了一种景深等先验信息未知条件下基于Non-Local means滤波的雾天降质图像恢复算法。首先,根据大气散射模型将经典的场景深度估计转化为大气面纱以及天空亮度估计,避免难求的场景深度图;然后,对雾天降质图像进行雾气平均化预处理,经过预处理图像平均亮度变小;其次,依据大气面纱的边缘跟雾天图像的低频具有大的相似性,采用Non-Localmeans滤波算法估计大气面纱模型;最后,为了使恢复图像的亮度跟色度都更加接近晴天图像,进行防止对比度放大的平滑与色度调整处理。通过与已有实验结果对比表明,提出的算法可以获得更精确的大气面纱,恢复图像不但边缘轮廓及景物特征都比较清楚,而且可有效抑制边缘晕环效应。 展开更多
关键词 大气散射模型 non-local means 大气面纱 去雾程度 图像恢复
在线阅读 下载PDF
基于结构张量的Non-Local Means去噪算法研究 被引量:7
3
作者 许娟 孙玉宝 韦志辉 《计算机工程与应用》 CSCD 北大核心 2010年第28期178-180,共3页
非局部平均是当前一种新兴而有效的图像去噪方法。为了能充分利用数字图像局部几何结构的自相似性,同时由于结构张量可有效刻画数字图像的局部几何结构特征,进而提出了基于结构张量相似性度量的非局部平均去噪算法。实验结果验证了该算... 非局部平均是当前一种新兴而有效的图像去噪方法。为了能充分利用数字图像局部几何结构的自相似性,同时由于结构张量可有效刻画数字图像的局部几何结构特征,进而提出了基于结构张量相似性度量的非局部平均去噪算法。实验结果验证了该算法抑制噪声的有效性,同时能很好地保持边缘等细节特征,峰值信噪比得到有效提高。 展开更多
关键词 图像去噪 非局部均值算法 结构张量 局部对比度
在线阅读 下载PDF
Fast Non-Local Means Algorithm Based on Krawtchouk Moments 被引量:2
4
作者 吴一全 戴一冕 +1 位作者 殷骏 吴健生 《Transactions of Tianjin University》 EI CAS 2015年第2期104-112,共9页
Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical f... Non-local means(NLM)method is a state-of-the-art denoising algorithm, which replaces each pixel with a weighted average of all the pixels in the image. However, the huge computational complexity makes it impractical for real applications. Thus, a fast non-local means algorithm based on Krawtchouk moments is proposed to improve the denoising performance and reduce the computing time. Krawtchouk moments of each image patch are calculated and used in the subsequent similarity measure in order to perform a weighted averaging. Instead of computing the Euclidean distance of two image patches, the similarity measure is obtained by low-order Krawtchouk moments, which can reduce a lot of computational complexity. Since Krawtchouk moments can extract local features and have a good antinoise ability, they can classify the useful information out of noise and provide an accurate similarity measure. Detailed experiments demonstrate that the proposed method outperforms the original NLM method and other moment-based methods according to a comprehensive consideration on subjective visual quality, method noise, peak signal to noise ratio(PSNR), structural similarity(SSIM) index and computing time. Most importantly, the proposed method is around 35 times faster than the original NLM method. 展开更多
关键词 IMAGE processing IMAGE DENOISING non-local means Krawtchouk MOMENTS SIMILARITY MEASURE
在线阅读 下载PDF
Improved Non-Local Means Algorithm for Image Denoising 被引量:4
5
作者 Lingli Huang 《Journal of Computer and Communications》 2015年第4期23-29,共7页
Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, a... Image denoising technology is one of the forelands in the field of computer graphic and computer vision. Non-local means method is one of the great performing methods which arouse tremendous research. In this paper, an improved weighted non-local means algorithm for image denoising is proposed. The non-local means denoising method replaces each pixel by the weighted average of pixels with the surrounding neighborhoods. The proposed method evaluates on testing images with various levels noise. Experimental results show that the algorithm improves the denoising performance. 展开更多
关键词 IMAGE DENOISING non-local means GAUSSIAN Noise
在线阅读 下载PDF
A powerful denoising method based on non-local means filter for cryo-electron microscopic images
6
作者 Dai-Yu Wei, Chang-Cheng Yin Department of Biophysics, Health Science Center, Peking University,38 Xueyuan Road, Beijing,100191 《生物物理学报》 CAS CSCD 北大核心 2009年第S1期508-508,共1页
Cryo-electron microscopic images of biological molecules usually have high noise and low contrast. It is essential to suppress noise and enhance contrast in order to recognize
关键词 cryo-electron MICROSCOPY noise reduction image processing non-local means FILTER
原文传递
Two Modifications of Weight Calculation of the Non-Local Means Denoising Method
7
作者 Musab Elkheir Salih Xuming Zhang Mingyue Ding 《Engineering(科研)》 2013年第10期522-526,共5页
The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponen... The non-local means (NLM) denoising method replaces each pixel by the weighted average of pixels with the sur-rounding neighborhoods. In this paper we employ a cosine weighting function instead of the original exponential func-tion to improve the efficiency of the NLM denoising method. The cosine function outperforms in the high level noise more than low level noise. To increase the performance more in the low level noise we calculate the neighborhood si-milarity weights in a lower-dimensional subspace using singular value decomposition (SVD). Experimental compari-sons between the proposed modifications against the original NLM algorithm demonstrate its superior denoising per-formance in terms of peak signal to noise ratio (PSNR) and histogram, using various test images corrupted by additive white Gaussian noise (AWGN). 展开更多
关键词 non-local means SINGULAR VALUE DECOMPOSITION WEIGHT Calculation
在线阅读 下载PDF
A Robust and Fast Non-Local Means Algorithm for Image Denoising 被引量:30
8
作者 刘艳丽 王进 +2 位作者 陈曦 郭延文 彭群生 《Journal of Computer Science & Technology》 SCIE EI CSCD 2008年第2期270-279,共10页
In the paper, we propose a robust and fast image denoising method. The approach integrates both Non- Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyr... In the paper, we propose a robust and fast image denoising method. The approach integrates both Non- Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm - similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm. 展开更多
关键词 image denoising non-local means Laplacian pyramid summed square image FFT
原文传递
The Algorithms about Fast Non-local Means Based Image Denoising 被引量:5
9
作者 Li-li XING Qian-shun CHANG Tian-tian QIAO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2012年第2期247-254,共8页
Image denoising is still a challenge of image processing. Buades et al. proposed a nonlocal means (NL-means) approach. This method had a remarkable denoising results at high expense of computational cost. In this pa... Image denoising is still a challenge of image processing. Buades et al. proposed a nonlocal means (NL-means) approach. This method had a remarkable denoising results at high expense of computational cost. In this paper, We compared several fast non-local means methods, and proposed a new fast algorithm. Numerical experiments showed that our algorithm considerably reduced the computational cost, and obtained visually pleasant images. 展开更多
关键词 ALGORITHM image denoising non-local means weight function
原文传递
基于VMD-SSA-K-means-iForest的重力坝监测数据异常模式混合识别算法研究
10
作者 李铁 李涵曼 +2 位作者 王福生 徐量 郭瑞 《水电能源科学》 北大核心 2026年第1期182-187,共6页
重力坝监测数据的异常识别对大坝安全评估具有重要意义,针对现有方法在模式辨识和特征提取方面的局限性,提出一种基于VMD-SSA-KMeans-iForest的重力坝监测数据异常值混合识别方法,该方法通过引入变分模态分解(VMD)优化SSA分解过程,显著... 重力坝监测数据的异常识别对大坝安全评估具有重要意义,针对现有方法在模式辨识和特征提取方面的局限性,提出一种基于VMD-SSA-KMeans-iForest的重力坝监测数据异常值混合识别方法,该方法通过引入变分模态分解(VMD)优化SSA分解过程,显著提升了特征提取的精度和鲁棒性。在此基础上,构建了基于K-means聚类与孤立森林(iForest)协同的异常识别框架,并将该方法应用于W重力坝异常数据识别中。结果表明,所提方法的异常识别准确率提升了2.5%,同时有效区分了结构损伤与仪器故障引起的异常模式,为重力坝安全评估提供了更可靠的技术支持。 展开更多
关键词 重力坝 奇异谱分析 变分模态分解 K-means聚类 孤立森林 异常模式识别
原文传递
A Two-Step Regularization Framework for Non-Local Means 被引量:1
11
作者 孙忠贵 陈松灿 乔立山 《Journal of Computer Science & Technology》 SCIE EI CSCD 2014年第6期1026-1037,共12页
As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The in, ple... As an effective patch-based denoising method, non-local means (NLM) method achieves favorable denoising performance over its local counterparts and has drawn wide attention in image processing community. The in, plementation of NLM can formally be decomposed into two sequential steps, i.e., computing the weights and using the weights to compute the weighted means. In the first step, the weights can be obtained by solving a regularized optimization. And in the second step, the means can be obtained by solving a weighted least squares problem. Motivated by such observations, we establish a two-step regularization framework for NLM in this paper. Meanwhile, using the fl-amework, we reinterpret several non-local filters in the unified view. Further, taking the framework as a design platform, we develop a novel non-local median filter for removing salt-pepper noise with encouraging experimental results. 展开更多
关键词 non-local means non-local median FRAMEWORK image denoising REGULARIZATION
原文传递
Dynamic behavior of rectangular crack in three-dimensional orthotropic elastic medium by means of non-local theory 被引量:2
12
作者 Haitao LIU Zhengong ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第2期173-190,共18页
The dynamic behavior of a rectangular crack in a three-dimensional (3D) orthotropic elastic medium is investigated under a harmonic stress wave based on the non-local theory. The two-dimensional (2D) Fourier trans... The dynamic behavior of a rectangular crack in a three-dimensional (3D) orthotropic elastic medium is investigated under a harmonic stress wave based on the non-local theory. The two-dimensional (2D) Fourier transform is applied, and the mixed- boundary value problems are converted into three pairs of dual integral equations with the unknown variables being the displacement jumps across the crack surfaces. The effects of the geometric shape of the rectangular crack, the circular frequency of the incident waves, and the lattice parameter of the orthotropic elastic medium on the dynamic stress field near the crack edges are analyzed. The present solution exhibits no stress singularity at the rectangular crack edges, and the dynamic stress field near the rectangular crack edges is finite. 展开更多
关键词 orthotropic elastic medium rectangular crack time-harmonic P-wave non-local theory
在线阅读 下载PDF
Validity of non-local mean filter and novel denoising method 被引量:2
13
作者 Xiangyuan LIU Zhongke WU Xingce WANG 《Virtual Reality & Intelligent Hardware》 EI 2023年第4期338-350,共13页
Background Image denoising is an important topic in the digital image processing field.This study theoretically investigates the validity of the classical nonlocal mean filter(NLM)for removing Gaussian noise from a no... Background Image denoising is an important topic in the digital image processing field.This study theoretically investigates the validity of the classical nonlocal mean filter(NLM)for removing Gaussian noise from a novel statistical perspective.Method By considering the restored image as an estimator of the clear image from a statistical perspective,we gradually analyze the unbiasedness and effectiveness of the restored value obtained by the NLM filter.Subsequently,we propose an improved NLM algorithm called the clustering-based NLM filter that is derived from the conditions obtained through the theoretical analysis.The proposed filter attempts to restore an ideal value using the approximately constant intensities obtained by the image clustering process.In this study,we adopt a mixed probability model on a prefiltered image to generate an estimator of the ideal clustered components.Result The experiment yields improved peak signal-to-noise ratio values and visual results upon the removal of Gaussian noise.Conclusion However,the considerable practical performance of our filter demonstrates that our method is theoretically acceptable as it can effectively estimate ideal images. 展开更多
关键词 Gaussian noise non-local means filter UNBIASEDNESS EFFECTIVENESS
在线阅读 下载PDF
基于k-means算法的聚类个数确定方法改进 被引量:5
14
作者 王丙参 王国长 魏艳华 《统计与决策》 北大核心 2025年第7期59-64,共6页
文章基于k-means算法探讨了最优聚类个数k*的确定方法:第一类是统计量方法;第二类是聚类算法不稳定性方法,即基于两次聚类结果间的距离,利用交叉验证、随机抽样取交集、自助法来构建聚类算法估计不稳定性指标,并根据投票、最小化均值方... 文章基于k-means算法探讨了最优聚类个数k*的确定方法:第一类是统计量方法;第二类是聚类算法不稳定性方法,即基于两次聚类结果间的距离,利用交叉验证、随机抽样取交集、自助法来构建聚类算法估计不稳定性指标,并根据投票、最小化均值方法确定k^(*)。数值模拟结果显示:在给定k^(*)的情况下,聚类结果与标签的距离或相似度可作为评价聚类结果的指标,为聚类算法评价提供了新的借鉴;基于k-means算法确定k^(*)的前提是数据集根据欧氏距离可明显分为几簇,相对而言,聚类算法不稳定性方法优于统计量方法;对于不稳定性指标,交叉验证估计方法与随机抽样取交集估计方法对抽样个数稳健,抽样个数依次建议略少于样本容量的1/3、80%;自助抽样估计方法由于利用了全部样本,因此效率更高;4种不稳定性指标没有显著差异,投票与最小化均值方法也没有显著差异。 展开更多
关键词 K-means算法 聚类个数 统计量 不稳定性
在线阅读 下载PDF
基于改进K-means算法的室内可见光通信O-OFDM系统信道均衡技术 被引量:1
15
作者 贾科军 连江龙 +1 位作者 张常瑞 蔺莹 《电讯技术》 北大核心 2025年第1期96-102,共7页
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随... 在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。 展开更多
关键词 可见光通信 光正交频分复用 多径信道 信道均衡 K-means算法 反向传播神经网络
在线阅读 下载PDF
基于AE并融合GMM与K-means的无监督颤振监测研究
16
作者 王丹 张凤南 +1 位作者 马岩尉 刘博 《工具技术》 北大核心 2025年第2期139-145,共7页
金属切削过程中颤振的监测方法大致可分为颤振特征提取和聚类分析,其中提取方法有一定的局限性。本文提出一种基于大量未标记动态信号的无监督铣削颤振监测方法,该方法不依赖加工参数和环境,不需要标签,稳定性强,切削力信号来自多次铣... 金属切削过程中颤振的监测方法大致可分为颤振特征提取和聚类分析,其中提取方法有一定的局限性。本文提出一种基于大量未标记动态信号的无监督铣削颤振监测方法,该方法不依赖加工参数和环境,不需要标签,稳定性强,切削力信号来自多次铣削实验。该方法基于自动编码将信号的每一段压缩成二维,使用基于高斯混合模型和K-means合并的混合聚类方法对压缩信号进行聚类。所提出的方法在所有6个典型的无监督评价指标中都优于高斯混合模型和K-means算法。 展开更多
关键词 颤振监测 高斯混合模型 K-means 无监督聚类 自动编码器
在线阅读 下载PDF
基于启发式交叉策略优化的K-Means聚类算法
17
作者 张立娜 张兴瑞 +2 位作者 马丽 于合龙 宋欣怡 《吉林大学学报(理学版)》 北大核心 2025年第6期1663-1672,共10页
针对传统K-Means算法对初始质心敏感、易陷入局部最优以及未能充分挖掘聚类结果潜在语义特征的问题,提出一种基于启发式交叉策略优化的K-Means聚类算法.首先,该算法通过密度驱动的启发式交叉初始化策略,筛选高密度区域的代表性父代点,... 针对传统K-Means算法对初始质心敏感、易陷入局部最优以及未能充分挖掘聚类结果潜在语义特征的问题,提出一种基于启发式交叉策略优化的K-Means聚类算法.首先,该算法通过密度驱动的启发式交叉初始化策略,筛选高密度区域的代表性父代点,并引入交叉系数动态生成多样性初始质心,以降低随机初始化导致的聚类结果波动性;其次,在聚类迭代过程中,结合父代点信息与簇内均值更新规则,通过交叉操作动态调整质心位置,解决了传统算法因局部最优导致的簇间重叠问题;最后,将优化后的聚类结果输入多层感知机,利用其非线性映射能力挖掘潜在特征,实现了聚类结果与深层语义特征的深度融合.实验结果表明,该算法的轮廓系数、Davies-Bouldin指数和调整Rand指数分别达0.634,1.398,0.621,显著优于其他改进算法,有效提升了算法的聚类准确性、稳定性和可解释性. 展开更多
关键词 启发式交叉策略 K-means聚类算法 多层感知机 特征融合
在线阅读 下载PDF
高效的云外包隐私保护K-means聚类研究
18
作者 曹来成 靳娜维 +1 位作者 冯涛 郭显 《华中科技大学学报(自然科学版)》 北大核心 2025年第5期143-149,共7页
为提高云外包隐私保护K-means算法的聚类效率和计算来自多方用户的密文数据,提出一种可以高效计算多方密文的云外包隐私保护K-means聚类方案.首先,基于稀疏约束的非负矩阵分解算法实现了高维数据的低维表示,从而有效提高了K-means聚类... 为提高云外包隐私保护K-means算法的聚类效率和计算来自多方用户的密文数据,提出一种可以高效计算多方密文的云外包隐私保护K-means聚类方案.首先,基于稀疏约束的非负矩阵分解算法实现了高维数据的低维表示,从而有效提高了K-means聚类算法在高维数据下的聚类效果;然后,采用基于共用密钥的多密钥全同态加密技术解决了多方密文在云服务器进行K-means聚类时存在同态运算复杂的问题,在此过程中通过构建四个安全的基础协议使隐私信息得到了保护;最后,使用三角不等式定理实现K-means聚类算法的剪枝优化,减少了聚类中存在的冗余距离计算,提高了聚类效率.实验结果表明:所提方案当处理高维数据时有着较高的聚类效率,且准确率接近于明文数据下的聚类. 展开更多
关键词 K-means算法 多密钥全同态加密 云外包 隐私保护 高维数据
原文传递
基于K-means算法的通信系统安全防御方法
19
作者 闫卫刚 《兵工自动化》 北大核心 2025年第5期47-51,共5页
为提升通信系统入侵检测性能,在K-means算法基础上进行算法优化。针对网络数据特征聚类数量无法提前估计问题,提出K值有效性指标来确定聚类数量和评测聚类质量,同时考虑各类簇特征对聚类的影响,利用特征加权距离考虑类内紧密型和类间的... 为提升通信系统入侵检测性能,在K-means算法基础上进行算法优化。针对网络数据特征聚类数量无法提前估计问题,提出K值有效性指标来确定聚类数量和评测聚类质量,同时考虑各类簇特征对聚类的影响,利用特征加权距离考虑类内紧密型和类间的分离性,依此作为聚类中心点。实验结果表明:改进K-means入侵检测算法具有更优的检测率和误报率,能有效提升系统安全防御质量。 展开更多
关键词 K-means算法 通信系统 网络攻击 检测率
在线阅读 下载PDF
融合K-Means与变异RODDPSO的公共充电站优化选址
20
作者 耿鹏 柳艳 朱宇航 《物联网学报》 2025年第2期202-213,共12页
为优化电动汽车公共充电站的选址问题,以K-均值(K-Means,k-means clustering algorithm)和随机分布式延迟粒子群优化(RODDPSO,randomly occurring distributedly delayed particle swarm optimization)算法为基础,根据电动汽车充电需求... 为优化电动汽车公共充电站的选址问题,以K-均值(K-Means,k-means clustering algorithm)和随机分布式延迟粒子群优化(RODDPSO,randomly occurring distributedly delayed particle swarm optimization)算法为基础,根据电动汽车充电需求,提出了一种融合K-Means与变异随机分布式延迟粒子群优化(VRODDPSO,variation randomly occurring distributedly delayed particle swarm optimization)算法的电动汽车充电站选址优化方法,以确定最佳的充电站位置。首先,改进了RODDPSO算法,增加了自适应变异。其次,引入VRODDPSO算法对KMeans的聚类中心位置进行优化,使用聚类完成后各个区域的聚类中心点作为充电站的最佳选址。相比仅使用KMeans算法进行3次聚类,改进后的聚类模型能够有效地解决K-Means算法中不恰当的初始聚类中心点可能导致算法陷入局部最小值、产生不理想的聚类的问题。最后,在南京市公共充电站优化选址的实证研究中,提出了一种新的衡量方法,能够根据现实充电站的综合利用率来评价不同算法下充电站的选址优劣。分析结果证实了使用K-Means与VRODDPSO算法融合的方法能够有效地优化聚类后的聚类中心位置,即充电桩和充电站的选址。 展开更多
关键词 K-means 变异随机分布式延迟粒子群优化 公共充电站 优化选址
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部