Differential evolution (DE) is a global optimizer for continuous design variables. To enhance DE, it is necessary to handle discrete design variables. In this paper, a discrete differential evolution (DDE) algorit...Differential evolution (DE) is a global optimizer for continuous design variables. To enhance DE, it is necessary to handle discrete design variables. In this paper, a discrete differential evolution (DDE) algorithm is proposed to handle discrete design variables The proposed DDE is based on the DE/l/rand/bin method. In the proposed DDE, the mutation ratio is regarded as the exchange probability, and thus, no modifications of DE/l/rand/bin are required. In addition, in order to maintain diversity through the search process, we initialize all search points. By introducing the initialization of all search points, global or quasi-optimum solution can be found. We validate the proposed DDE by applying it to several benchmark problems.展开更多
Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery...Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.展开更多
During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive...During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.展开更多
Based on the theory of continuum mechanics of multi-pbase media, a mathematical model and non-linear FEM equation of the coupling instability problem of solid-fluid biphase media for coal-methane outburst under finite...Based on the theory of continuum mechanics of multi-pbase media, a mathematical model and non-linear FEM equation of the coupling instability problem of solid-fluid biphase media for coal-methane outburst under finite deformation are established. The critical conditions of the surface instability are presented as the singularity of the total stiffness matrices of the coal body for coal-methaue outburst. That means the deformtion or the coal body emerges bifurcatiou phenomena. The numerical simulation of a typical outburst is made.展开更多
Several problems arising in science and engineering are modeled by differential equations that involve conditions that are specified at more than one point. The non-linear two-point boundary value problem (TPBVP) (Br...Several problems arising in science and engineering are modeled by differential equations that involve conditions that are specified at more than one point. The non-linear two-point boundary value problem (TPBVP) (Bratu’s equation, Troesch’s problems) occurs engineering and science, including the modeling of chemical reactions diffusion processes and heat transfer. An analytical expression pertaining to the concentration of substrate is obtained using Homotopy perturbation method for all values of parameters. These approximate analytical results were found to be in good agreement with the simulation results.展开更多
A variational formulation of the synthesis problem for plane radiating systems according to the prescribed power directivity pattern (DP) is considered. The function representing the mean-square deviation of the presc...A variational formulation of the synthesis problem for plane radiating systems according to the prescribed power directivity pattern (DP) is considered. The function representing the mean-square deviation of the prescribed and synthesized power DPs and containing the additional term with squared norm of the current or field in the antenna aperture is considered as the criterion of optimization. Freedom to choose the phase DP is used to improve the proximity of the prescribed and synthesized DPs. In such formulation, the classes of non-linear problems, for which the non-uniqueness of solutions, their branching and bifurcation are characteristic, arise. The properties of solutions depend on the electric size of radiating system and prescribed power DP. From a practical point of view, the existence of different solutions creating the same or similar DPs, gives the opportunity to choose the solution that has a simpler implementation. The synthesis problems for plane radiating systems and plane arrays are considered.展开更多
Restrictions of classical mechanics which take place because of holonomic constraints hypothesis used for obtaining canonical Lagrange equation are analyzed. As it was shown that this hypothesis excludes non-linear te...Restrictions of classical mechanics which take place because of holonomic constraints hypothesis used for obtaining canonical Lagrange equation are analyzed. As it was shown that this hypothesis excludes non-linear terms in the expression for forces which are responsible for energy exchange between different degrees of freedom of a many-body system. An oscillator passing a potential barrier is considered as an example which demonstrated this fact. It was found that the oscillator can pass the barrier even if kinetic energy of its mass center is below the potential barrier’s height due to non-linear terms. This effect is lost because of holonomic constraints hypothesis. We also explained how one can derive a system’s motion equation without the use of holonomic constraints hypothesis. This equation can be used to describe non-linear irreversible processes within the frames of Newton’s laws.展开更多
In this paper,the existence,the uniqueness,the asymptotic behavior and the non-existence of the global generalized solutions of the initial boundary value problems for the non-linear pseudo-parabolic equation ut-αuxx...In this paper,the existence,the uniqueness,the asymptotic behavior and the non-existence of the global generalized solutions of the initial boundary value problems for the non-linear pseudo-parabolic equation ut-αuxx-βuxxt=F(u)-βF (u)xx are proved,where α,β 0 are constants,F(s) is a given function.展开更多
Effect of perturbations in Coriolis and centrifugal forces on the non-linear stability of the libration point L4 in the restricted three body problem is studied when both the primaries are axis symmetric bodies (triax...Effect of perturbations in Coriolis and centrifugal forces on the non-linear stability of the libration point L4 in the restricted three body problem is studied when both the primaries are axis symmetric bodies (triaxial rigid bodies) and the bigger primary is a source of radiation. Moser’s conditions are utilized in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff’s normal form with the help of double D’Alembert’s series. It is found that L4 is stable for all mass ratios in the range of linear stability except for the three mass ratios μc1, μc2 and μc3, which depend upon the perturbations ε1 and ε1 in the Coriolis and centrifugal forces respectively and the parameters A1,A2,A3 and A4 which depend upon the semi-axes a1,b1,c1;a2,b2,c2 of the triaxial rigid bodies and p, the radiation parameter.展开更多
A mathematical model to describe the enzyme reaction, mass transfer and heat effects in the calorimetric system is discussed. The model is based on non-stationary diffusion Equation containing a nonlinear term related...A mathematical model to describe the enzyme reaction, mass transfer and heat effects in the calorimetric system is discussed. The model is based on non-stationary diffusion Equation containing a nonlinear term related to immobilize liver esterase by flow calorimetry. This paper presents the complex numerical methods (Adomian decomposition method, Homotopy analysis and perturbation method) to solve the non-linear differential Equations that depict the diffusion coupled with a non-linear reaction terms. Approximate analytical expressions for substrate concentration have been derived for all values of parameters α, β and γE. These analytical results are compared with the available numerical results and are found to be in good agreement.展开更多
In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact infor...In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty.展开更多
To begin with, in this paper, the governing equations of the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with variable thickness are derived. By using 'the met...To begin with, in this paper, the governing equations of the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with variable thickness are derived. By using 'the method of two-variable' and introducing four small parameters, the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with linear variable thickness are studied, and the uniformly valid asymptotic solution of Nth-order for epsilon(1) and Mth-order for epsilon(2) are obtained.展开更多
In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary co...In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary conditions on a non-uniform mesh. The proposed variable mesh approximation is directly applicable to the integro-differential equation with singular coefficients. We need not require any special discretization to obtain the solution near the singular point. The convergence analysis of a difference scheme for the diffusion convection equation is briefly discussed. The presented variable mesh strategy is applicable when the internal grid points of the solution space are both even and odd in number as compared to the method discussed by authors in their previous work in which the internal grid points are strictly odd in number. The advantage of using this new variable mesh strategy is highlighted computationally.展开更多
Let Pr denote an almost-prime with at most r prime factors,counted according to multiplicity.In this paper,it is proved that,for every sufficiently large even integer N,the equation N=x^(2)+p_(2)^(2)+p_(3)^(3)+p_(4)^(...Let Pr denote an almost-prime with at most r prime factors,counted according to multiplicity.In this paper,it is proved that,for every sufficiently large even integer N,the equation N=x^(2)+p_(2)^(2)+p_(3)^(3)+p_(4)^(3)+p_(5)^(5)+_6^(5)is solvable with being an almost-prime P_(6) and the other variables primes.This result constitutes an enhancement upon the previous result of Hooley[Recent Progress in Analytic Number Theory,Vol.1(Durham,1979),London:Academic Press,1981,127-191].展开更多
Let d(n;r_(1),q_(1),r_(2),q_(2))be the number of factorization n=n_(1)n_(2)satisfying n_i≡r_i(mod q_i)(i=1,2)andΔ(x;r_(1),q_(1),r_(2),q_(2))be the error term of the summatory function of d(n;r_(1),q_(1),r_(2),q_(2))...Let d(n;r_(1),q_(1),r_(2),q_(2))be the number of factorization n=n_(1)n_(2)satisfying n_i≡r_i(mod q_i)(i=1,2)andΔ(x;r_(1),q_(1),r_(2),q_(2))be the error term of the summatory function of d(n;r_(1),q_(1),r_(2),q_(2)).Suppose x≥(q_(1)q_(2))^(1+ε),1≤r_i≤q_i,and(r_i,q_i)=1(i=1,2).This paper studies the power moments and sign changes ofΔ(x;r_(1),q_(1),r_(2),q_(2)).We prove that for sufficiently large constant C,Δ(q_(1)q_(2)x:r_(1),q_(1),r_(2),q_(2))changes sign in the interval[T,T+C√T]for any large T.Meanwhile,we show that for small constants c and c,there exist infinitely many subintervals of length c√log^(-7)T in[T,2T]where±Δ(q_(1)q_(2)x:r_(1),q_(1),r_(2),q_(2))>cx^(1/4)always holds.展开更多
Automatically answer math word problems is a challenging task in artificial intelligence.Previous solvers constructed mathematical expressions in sequence or binary tree.However,these approaches may suffer from the fo...Automatically answer math word problems is a challenging task in artificial intelligence.Previous solvers constructed mathematical expressions in sequence or binary tree.However,these approaches may suffer from the following issues:Models relying on such structures exhibit fixed-order reasoning(e.g.,left-to-right),limiting flexibility and increasing error susceptibility;prior models rely on autoregressive reasoning in a single pass,accumulating minor errors(e.g.,incorrect math symbols)during generation,resulting in reduced accuracy.To address the above issues,we emulate the human“check and modify”process in reasoning and propose a unified M-tree self-correction solver(UTSCSolver)by iterative inference with self-correction mechanism.First,we use an iterative,non-autoregressive process for generating mathematical expressions,free from fixed generation orders to handle complex and diverse problems.Additionally,we design a self-correction mechanism based on alternating execution between a generator and a discriminator.This module iteratively detects and rectifies errors in generated expressions,leveraging previous iteration information for subsequent generation guidance.Experimental results show that our UTSC-Solver outperforms traditional models in accuracy on two popular datasets,while it improves the interpretability of mathematical reasoning.展开更多
BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current statu...BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.展开更多
This case study explores the efficacy of school-based intervention to address psychosocial challenges faced by an 11-year-old adolescent. The case study aimed to decrease the agression and acting out behavior as resul...This case study explores the efficacy of school-based intervention to address psychosocial challenges faced by an 11-year-old adolescent. The case study aimed to decrease the agression and acting out behavior as result of being victimized at school by the peers. The aim was to assess and manage the child’s aggressive behavior and academic underperformance which played a significant role in the child’s low self-esteem and emotional regulation. A comprehensive assessment was conducted to rule out the difficulties and a multi-faceted intervention strategy was utilized including anger management and structured activity scheduling that helped that child to improve his academic performance as well as to learn to manage his emotional expression. Throughout 16 sessions, the intervention targeted key behavioural indicators such as emotional expression, and aggression;post-assessment results demonstrated a 22% improvement in the child’s behavioral and academic challenges. The findings suggest that a multi-faceted therapeutic approach can be effective in addressing complex issues of aggression and academic underperformance in children, highlighting the importance of integrated psychological and educational interventions.展开更多
Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either dire...Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either directly or by reducing it to other problems.This paper introduces the Julia ecosystem for solving and analyzing CSPs with a focus on the programming practices.We introduce some important CSPs and show how these problems are reduced to each other.We also show how to transform CSPs into tensor networks,how to optimize the tensor network contraction orders,and how to extract the solution space properties by contracting the tensor networks with generic element types.Examples are given,which include computing the entropy constant,analyzing the overlap gap property,and the reduction between CSPs.展开更多
This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the chara...This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the characteristic function and resolvent of this third-order differential operator.Secondly,by using the expression for the resolvent of the operator,we prove that the spectrum for this operator consists of simple eigenvalues and a finite number of eigenvalues with multiplicity 2.Finally,we solve the inverse problem for this operator,which states that the non-local potential function can be reconstructed from four spectra.Specially,we prove the Ambarzumyan theorem and indicate that odd or even potential functions can be reconstructed by three spectra.展开更多
文摘Differential evolution (DE) is a global optimizer for continuous design variables. To enhance DE, it is necessary to handle discrete design variables. In this paper, a discrete differential evolution (DDE) algorithm is proposed to handle discrete design variables The proposed DDE is based on the DE/l/rand/bin method. In the proposed DDE, the mutation ratio is regarded as the exchange probability, and thus, no modifications of DE/l/rand/bin are required. In addition, in order to maintain diversity through the search process, we initialize all search points. By introducing the initialization of all search points, global or quasi-optimum solution can be found. We validate the proposed DDE by applying it to several benchmark problems.
基金Supported by the Natural Science Foundation of Guangxi Province(Grant Nos.2023GXNSFAA026067,2024GXN SFAA010521)the National Natural Science Foundation of China(Nos.12361079,12201149,12261026).
文摘Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods.
基金supported by the National Natural Sci‐ence Foundation of China(Grant No.62306325)。
文摘During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.
文摘Based on the theory of continuum mechanics of multi-pbase media, a mathematical model and non-linear FEM equation of the coupling instability problem of solid-fluid biphase media for coal-methane outburst under finite deformation are established. The critical conditions of the surface instability are presented as the singularity of the total stiffness matrices of the coal body for coal-methaue outburst. That means the deformtion or the coal body emerges bifurcatiou phenomena. The numerical simulation of a typical outburst is made.
文摘Several problems arising in science and engineering are modeled by differential equations that involve conditions that are specified at more than one point. The non-linear two-point boundary value problem (TPBVP) (Bratu’s equation, Troesch’s problems) occurs engineering and science, including the modeling of chemical reactions diffusion processes and heat transfer. An analytical expression pertaining to the concentration of substrate is obtained using Homotopy perturbation method for all values of parameters. These approximate analytical results were found to be in good agreement with the simulation results.
文摘A variational formulation of the synthesis problem for plane radiating systems according to the prescribed power directivity pattern (DP) is considered. The function representing the mean-square deviation of the prescribed and synthesized power DPs and containing the additional term with squared norm of the current or field in the antenna aperture is considered as the criterion of optimization. Freedom to choose the phase DP is used to improve the proximity of the prescribed and synthesized DPs. In such formulation, the classes of non-linear problems, for which the non-uniqueness of solutions, their branching and bifurcation are characteristic, arise. The properties of solutions depend on the electric size of radiating system and prescribed power DP. From a practical point of view, the existence of different solutions creating the same or similar DPs, gives the opportunity to choose the solution that has a simpler implementation. The synthesis problems for plane radiating systems and plane arrays are considered.
文摘Restrictions of classical mechanics which take place because of holonomic constraints hypothesis used for obtaining canonical Lagrange equation are analyzed. As it was shown that this hypothesis excludes non-linear terms in the expression for forces which are responsible for energy exchange between different degrees of freedom of a many-body system. An oscillator passing a potential barrier is considered as an example which demonstrated this fact. It was found that the oscillator can pass the barrier even if kinetic energy of its mass center is below the potential barrier’s height due to non-linear terms. This effect is lost because of holonomic constraints hypothesis. We also explained how one can derive a system’s motion equation without the use of holonomic constraints hypothesis. This equation can be used to describe non-linear irreversible processes within the frames of Newton’s laws.
基金Supported by the National Natural Science Foundation of China(10671182)
文摘In this paper,the existence,the uniqueness,the asymptotic behavior and the non-existence of the global generalized solutions of the initial boundary value problems for the non-linear pseudo-parabolic equation ut-αuxx-βuxxt=F(u)-βF (u)xx are proved,where α,β 0 are constants,F(s) is a given function.
文摘Effect of perturbations in Coriolis and centrifugal forces on the non-linear stability of the libration point L4 in the restricted three body problem is studied when both the primaries are axis symmetric bodies (triaxial rigid bodies) and the bigger primary is a source of radiation. Moser’s conditions are utilized in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff’s normal form with the help of double D’Alembert’s series. It is found that L4 is stable for all mass ratios in the range of linear stability except for the three mass ratios μc1, μc2 and μc3, which depend upon the perturbations ε1 and ε1 in the Coriolis and centrifugal forces respectively and the parameters A1,A2,A3 and A4 which depend upon the semi-axes a1,b1,c1;a2,b2,c2 of the triaxial rigid bodies and p, the radiation parameter.
文摘A mathematical model to describe the enzyme reaction, mass transfer and heat effects in the calorimetric system is discussed. The model is based on non-stationary diffusion Equation containing a nonlinear term related to immobilize liver esterase by flow calorimetry. This paper presents the complex numerical methods (Adomian decomposition method, Homotopy analysis and perturbation method) to solve the non-linear differential Equations that depict the diffusion coupled with a non-linear reaction terms. Approximate analytical expressions for substrate concentration have been derived for all values of parameters α, β and γE. These analytical results are compared with the available numerical results and are found to be in good agreement.
文摘In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty.
文摘To begin with, in this paper, the governing equations of the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with variable thickness are derived. By using 'the method of two-variable' and introducing four small parameters, the problem of the non-linear unsymmetrical bending for cylindrically orthotropic circular thin plate with linear variable thickness are studied, and the uniformly valid asymptotic solution of Nth-order for epsilon(1) and Mth-order for epsilon(2) are obtained.
文摘In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary conditions on a non-uniform mesh. The proposed variable mesh approximation is directly applicable to the integro-differential equation with singular coefficients. We need not require any special discretization to obtain the solution near the singular point. The convergence analysis of a difference scheme for the diffusion convection equation is briefly discussed. The presented variable mesh strategy is applicable when the internal grid points of the solution space are both even and odd in number as compared to the method discussed by authors in their previous work in which the internal grid points are strictly odd in number. The advantage of using this new variable mesh strategy is highlighted computationally.
基金Supported by NSFC (Nos.12471009,12301006,12001047,11901566)Beijing Natural Science Foundation (No.1242003)National Training Program of Innovation and Entrepreneurship for Undergraduates(No.202307011)。
文摘Let Pr denote an almost-prime with at most r prime factors,counted according to multiplicity.In this paper,it is proved that,for every sufficiently large even integer N,the equation N=x^(2)+p_(2)^(2)+p_(3)^(3)+p_(4)^(3)+p_(5)^(5)+_6^(5)is solvable with being an almost-prime P_(6) and the other variables primes.This result constitutes an enhancement upon the previous result of Hooley[Recent Progress in Analytic Number Theory,Vol.1(Durham,1979),London:Academic Press,1981,127-191].
基金supported by the Talent Fund of Beijing Jiaotong University(No.2020RC012)NSFC(No.11871295),supported by NSFC(No.11971476),supported by NSFC(No.12071421)。
文摘Let d(n;r_(1),q_(1),r_(2),q_(2))be the number of factorization n=n_(1)n_(2)satisfying n_i≡r_i(mod q_i)(i=1,2)andΔ(x;r_(1),q_(1),r_(2),q_(2))be the error term of the summatory function of d(n;r_(1),q_(1),r_(2),q_(2)).Suppose x≥(q_(1)q_(2))^(1+ε),1≤r_i≤q_i,and(r_i,q_i)=1(i=1,2).This paper studies the power moments and sign changes ofΔ(x;r_(1),q_(1),r_(2),q_(2)).We prove that for sufficiently large constant C,Δ(q_(1)q_(2)x:r_(1),q_(1),r_(2),q_(2))changes sign in the interval[T,T+C√T]for any large T.Meanwhile,we show that for small constants c and c,there exist infinitely many subintervals of length c√log^(-7)T in[T,2T]where±Δ(q_(1)q_(2)x:r_(1),q_(1),r_(2),q_(2))>cx^(1/4)always holds.
基金supported by the National Natural Science Foundation of China(62106244)the Fundamental Research Funds for the Central Universities(WK2150110021)the University Synergy Innovation Program of Anhui Province(GXXT-2022-042).
文摘Automatically answer math word problems is a challenging task in artificial intelligence.Previous solvers constructed mathematical expressions in sequence or binary tree.However,these approaches may suffer from the following issues:Models relying on such structures exhibit fixed-order reasoning(e.g.,left-to-right),limiting flexibility and increasing error susceptibility;prior models rely on autoregressive reasoning in a single pass,accumulating minor errors(e.g.,incorrect math symbols)during generation,resulting in reduced accuracy.To address the above issues,we emulate the human“check and modify”process in reasoning and propose a unified M-tree self-correction solver(UTSCSolver)by iterative inference with self-correction mechanism.First,we use an iterative,non-autoregressive process for generating mathematical expressions,free from fixed generation orders to handle complex and diverse problems.Additionally,we design a self-correction mechanism based on alternating execution between a generator and a discriminator.This module iteratively detects and rectifies errors in generated expressions,leveraging previous iteration information for subsequent generation guidance.Experimental results show that our UTSC-Solver outperforms traditional models in accuracy on two popular datasets,while it improves the interpretability of mathematical reasoning.
基金Supported by the Shijiazhuang Science and Technology Research and Development Program,No.221460383.
文摘BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.
文摘This case study explores the efficacy of school-based intervention to address psychosocial challenges faced by an 11-year-old adolescent. The case study aimed to decrease the agression and acting out behavior as result of being victimized at school by the peers. The aim was to assess and manage the child’s aggressive behavior and academic underperformance which played a significant role in the child’s low self-esteem and emotional regulation. A comprehensive assessment was conducted to rule out the difficulties and a multi-faceted intervention strategy was utilized including anger management and structured activity scheduling that helped that child to improve his academic performance as well as to learn to manage his emotional expression. Throughout 16 sessions, the intervention targeted key behavioural indicators such as emotional expression, and aggression;post-assessment results demonstrated a 22% improvement in the child’s behavioral and academic challenges. The findings suggest that a multi-faceted therapeutic approach can be effective in addressing complex issues of aggression and academic underperformance in children, highlighting the importance of integrated psychological and educational interventions.
基金funded by the National Key R&D Program of China(Grant No.2024YFE0102500)the National Natural Science Foundation of China(Grant No.12404568)+1 种基金the Guangzhou Municipal Science and Technology Project(Grant No.2023A03J00904)the Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area,China and the Undergraduate Research Project from HKUST(Guangzhou).
文摘Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either directly or by reducing it to other problems.This paper introduces the Julia ecosystem for solving and analyzing CSPs with a focus on the programming practices.We introduce some important CSPs and show how these problems are reduced to each other.We also show how to transform CSPs into tensor networks,how to optimize the tensor network contraction orders,and how to extract the solution space properties by contracting the tensor networks with generic element types.Examples are given,which include computing the entropy constant,analyzing the overlap gap property,and the reduction between CSPs.
基金supported by the Tianjin Municipal Science and Technology Program of China(No.23JCZDJC00070)。
文摘This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the characteristic function and resolvent of this third-order differential operator.Secondly,by using the expression for the resolvent of the operator,we prove that the spectrum for this operator consists of simple eigenvalues and a finite number of eigenvalues with multiplicity 2.Finally,we solve the inverse problem for this operator,which states that the non-local potential function can be reconstructed from four spectra.Specially,we prove the Ambarzumyan theorem and indicate that odd or even potential functions can be reconstructed by three spectra.