We present a 3+1 formulation of the light modes in nonlinear electrodynamics described by Plebanski-type Lagrangians,which include post-Maxwellian,Born-Infeld,ModMax,and Heisenberg-Euler-Schwinger QED Lagrangians.In n...We present a 3+1 formulation of the light modes in nonlinear electrodynamics described by Plebanski-type Lagrangians,which include post-Maxwellian,Born-Infeld,ModMax,and Heisenberg-Euler-Schwinger QED Lagrangians.In nonlinear electrodynamics,strong electromagnetic fields modify the vacuum such that it acquires optical properties.Such a field-modified vacuum can possess electric permittivity,magnetic permeability,and a magneto-electric response,inducing novel phenomena such as vacuum birefringence.By exploiting the mathematical structures of Plebanski-type Lagrangians,we establish a streamlined procedure and explicit formulas to determine light modes,i.e.,refractive indices and polarization vectors for a given propagation direction.We also work out the light modes of the various Lagrangians for an arbitrarily strong magnetic field.The 3+1 formulation advanced in this paper has direct applications to the current vacuum birefringence research:terrestrial experiments using permanent magnets/ultra-intense lasers for the subcritical regime and astrophysical observation of X-rays from highly magnetized neutron stars for the near-critical and supercritical regimes.展开更多
Collective quantum states, such as subradiant and superradiant states, are useful for controlling optical responses in many-body quantum systems. In this work, we study novel collective quantum phenomena in waveguide-...Collective quantum states, such as subradiant and superradiant states, are useful for controlling optical responses in many-body quantum systems. In this work, we study novel collective quantum phenomena in waveguide-coupled Bragg atom arrays with inhomogeneous frequencies.For atoms without free-space dissipation, collectively induced transparency is produced by destructive quantum interference between subradiant and superradiant states. In a large Bragg atom array, multi-frequency photon transparency can be obtained by considering atoms with different frequencies. Interestingly, we find collectively induced absorption(CIA) by studying the influence of free-space dissipation on photon transport. Tunable atomic frequencies nontrivially modify decay rates of subradiant states. When the decay rate of a subradiant state equals to the free-space dissipation, photon absorption can reach a limit at a certain frequency. In other words, photon absorption is enhanced with low free-space dissipation, distinct from previous photon detection schemes. We also show multi-frequency CIA by properly adjusting atomic frequencies. Our work presents a way to manipulate collective quantum states and exotic optical properties in waveguide quantum electrodynamics(QED) systems.展开更多
This work identifies the branch point, which was never explicit in EM treatises, from which came the choice of abandoning the Galilean transformations in favor of the Lorentz covariance, a path that originated the var...This work identifies the branch point, which was never explicit in EM treatises, from which came the choice of abandoning the Galilean transformations in favor of the Lorentz covariance, a path that originated the various relativistic theories. The need arising from the expanding Earth for a hydrodynamic mechanism for Newtonian and Coulomb fields is discussed. This hydrodynamic material mechanism is shown to constitute a completion of the Newton and Maxwell concepts of the fields, which were only a phenomenological description of physical reality. It is shown that the analogy between Maxwell’s equations and hydrodynamics cannot become a perfect correspondence. The lack of coupling of the electromagnetic field to the underlying material “causing field”—which induces hydrodynamical forces and accelerations observed only phenomenologically—gives rise to inaccuracies in the formulation of its equations, which are incorrect for Galilean covariance. But the most serious flaw in the original formulation of electromagnetism is the erroneous identification of the flow velocity of the field (variable as 1/r2) with the speed of light c, with which it was demonstrated that the fields of charges in motion contract in the direction of motion (the Heaviside ellipsoid, 1888, 1889). From this error, historically due to the incomplete development of many hydrodynamics sectors (a situation that persists today), came Fitz Gerald’s contractions and finally, the relativistic theories. Some future research lines are proposed for a return to realistic physics and a possible but still weak form of Galilean covariance.展开更多
A theoretical analysis regarding active vibration control of rotating machines with current-controlled electrodynamic actuators between machine feet and steel frame foundation and with velocity feedback of the machine...A theoretical analysis regarding active vibration control of rotating machines with current-controlled electrodynamic actuators between machine feet and steel frame foundation and with velocity feedback of the machine feet vibrations is presented.First,a generalized mathematical formulation is derived based on a state-space description which can be used for different kinds of models(1D,2D,and 3D models).It is shown that under special boundary conditions,the control parameters can be directly implemented into the stiffness and damping matrices of the system.Based on the generalized mathematical formulation,an example of a rotating machine—described by a 2D model—with journal bearings,flexible rotor,current-controlled electrodynamic actuators,steel frame foundation,and velocity feedback of the machine feet vibrations is presented where the effectiveness of the described active vibration control system is demonstrated.展开更多
This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial...This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial neural network modeling techniques,the Authors interrogated a large database assembled from the existing research literature to assess the performance of twelve equation rules in predicting the undrained shear strength(s_(u))mobilized for remolded fine-grained soils at different values of liquidity index(I_(L))and water content ratio.Based on their analyses,the Authors proposed a simple and reportedly reliable correlation(i.e.,Eq.9 in their paper)for predicting s_(u) over the I_(L) range of 0.15 to 3.00.This article describes various shortcomings in the Authors’assembled database(including potentially anomalous data and covering an excessively wide I_(L) range in relation to routine geotechnical and transportation engineering applications)and their proposed s_(u)=f(I_(L))correlation.Contrary to the Authors’assertions,their proposed correlation is not reliable for fine-grained soils with consistencies in the general firm to stiff range(i.e.,for 0.15<I_(L)<0.40),increasingly overestimating s_(u) for reducing I_(L),and eventually predicting s_(u)→+∞for I_(L)→0.15+(while producing mathematically undefined s_(u) for I_(L)<0.15),thus rendering their correlation unconservative and potentially leading to unsafe geotechnical designs.Exponential or regular-power type s_(u)=f(I_(L))models are more s_(u)itable when developing correlations that are applicable over the full plastic range(of 0<I_(L)<1),thereby providing reasonably conservative s_(u) predictions for use in the preliminary design for routine geotechnical engineering applications.展开更多
Many experiments have supported the contact models,such as the GW and MB models,but the majority of previous validations have been performed under light loads,resulting in a linear relationship between normal force an...Many experiments have supported the contact models,such as the GW and MB models,but the majority of previous validations have been performed under light loads,resulting in a linear relationship between normal force and contact area.However,the real contact area fraction should never equal one;there must be a limit smaller than the apparent area,implying that the real contact area cannot increase linearly indefinitely.In this paper,the real contact area between two polymethylmethacrylate(PMMA)blocks under heavy load is measured using the total reflection method,and the contact area is analyzed using the image processing method.The results show that the real contact area increases with normal load linearly in light loads but non-linearly in heavy loads;the number of contact spots increases with load linearly in light loads but also non-linearly in heavy loads,synchronous with the change in the real contact area.The GW,MB,and Zhao,Maietta,and Chang(ZMC)models were used to predict the experiment results,but none of them predicted the non-linear stage.A revised GW model based on the bulk deformation hypothesis performs better in predicting the non-linear stage.The study’s findings can be applied to PMMA or other similar materials,and they can serve as a useful reference for future research on the contact mechanisms of other materials.展开更多
Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkl...Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkle of films on non-linear elastic substrates has received less attention.In this article,a unique wrinkle evolution of the film-substrate system with a J-shaped non-linear stress-strain relation is reported.The result shows that a concave hexagonal array pattern is formed with the shrinkage strain of the film-substrate systems developing.As the interconnection of hexagonal arrays,a unit cell ridge network appears with properties such as chirality and helix.The subparagraph maze pattern formed with high compression is mainly composed of special single-cell ridge networks such as spiral single cores,chiral double cores,and combined multi-cores.This evolutionary model is highly consistent with the results of experiments,and it also predicts wrinkle morphology that has not yet been reported.These findings can serve as a novel explanation for the surface wrinkle of biological soft tissue,as well as provide references for the preparation of artificial biomaterials and programmable soft matter.展开更多
We theoretically study the collective decay of two atoms trapped in a single mode cavity and we describe the evolution of the population of Dicke states. We show that the collective decay property is strongly dependen...We theoretically study the collective decay of two atoms trapped in a single mode cavity and we describe the evolution of the population of Dicke states. We show that the collective decay property is strongly dependent on the phase of atomic radiation and the speeding up of collective decay can only be observed in a bad cavity regime. For in-or out-phase case,this occurs due to the quantum interference enhancement, no matter which atom is excited initially. For π/2 phase, the speeding up of collective decay takes place if the first atom is excited at the beginning. However, it disappears due to the quantum interference cancellation if the second atom is excited. Compared with the in-phase and out-phase cases,we also show that the speeding up of collective decay can be significantly enhanced in strong coupling regime for π/2 phase, although one atom is decoupled to the cavity in this condition. The study presented here is helpful to understand the physical mechanism of collective decay in cavity quantum electrodynamics and it provides a useful method to control the collective decay phenomenon via quantum interference effect.展开更多
This paper presents a scheme for implementing a Fredkin gate on three modes of a cavity. The scheme is based on the dispersive atom-cavity interaction. By modulating the cavity frequency and the atomic transition freq...This paper presents a scheme for implementing a Fredkin gate on three modes of a cavity. The scheme is based on the dispersive atom-cavity interaction. By modulating the cavity frequency and the atomic transition frequency appropriately, it obtains the effective form of nonlinear interaction between photons in the three-mode cavity. This availability is testified via numerical analysis. It also considers both the situations with and without dissipation.展开更多
We theoretically study the system of a superconducting transmission line resonator coupled to two interacting super- conducting flux qubits. It is shown that under certain conditions the resonator mode can be tuned to...We theoretically study the system of a superconducting transmission line resonator coupled to two interacting super- conducting flux qubits. It is shown that under certain conditions the resonator mode can be tuned to two-photon resonance between the ground state and the highest excited state while the middle excited states are far-off resonance. Furthermore, we study the steady-state properties of the flux qubits and resonator, such as the photon statistics, the spectrum and squeezing of the resonator, and demonstrate that two-photon laser can be implemented with current experimental technology.展开更多
An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principl...An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principles (GVPs) are established, which directly leads to all four Maxwell's equations, two intensity-potential equations, two constitutive equations, and eight boundary conditions. A family of constrained variational principles is derived sequentially. As additional verifications, two degenerated forms are obtained, equivalent to two known variational principles. Two modified GVPs are given to provide the hybrid finite element models for the present problem.展开更多
In this paper we investigate the scalar field evolution in the dyadosphere spacetime by using the third-order WKB approximation. We find that the coupling term between the gravitation and the nonlinear electrodynamics...In this paper we investigate the scalar field evolution in the dyadosphere spacetime by using the third-order WKB approximation. We find that the coupling term between the gravitation and the nonlinear electrodynamics makes the scalar field decay more quickly and it also makes the scalar field oscillate more slowly. On the o'ther words, this coupling term takes effect on the scalar field evolution as a damping factor. At the same time these effects become more obvious for the scalar field with higher angle quantum number.展开更多
In this theoretical work,we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator.We systematically study the dependence of the quadruple coupling strength and...In this theoretical work,we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator.We systematically study the dependence of the quadruple coupling strength and the qubit decoherence rate and point out the optimized operating position of the hybrid system.According to the transmission given by the input-output theory,the signatures in the resonator spectrum are predicted.Furthermore,based on the parameters already achieved in previous works,we prove that the device described in this paper can achieve the strong coupling limit,i.e.,this approach can be used for system extension under the existing technical conditions.Our results show an effective and promotable approach to couple quantum dot structures in plane with the resonator and propose a meaningful extension method.展开更多
Quantum electrodynamics in a laser is formulated, in which the electron–laser interaction is exactly considered, while the interaction of an electron and a single photon is considered by perturbation. The formulation...Quantum electrodynamics in a laser is formulated, in which the electron–laser interaction is exactly considered, while the interaction of an electron and a single photon is considered by perturbation. The formulation is applied to the electron– laser collisions. The effect of coherence between photons in the laser is therefore fully considered in these collisions. The possibility of γ-ray laser generation by use of this kind of collision is discussed.展开更多
In this paper,we study the thermodynamics and the weak cosmic censorship conjecture of the nonlinear electrodynamics black hole under the scattering of a charged complex scalar field.According to the energy and charge...In this paper,we study the thermodynamics and the weak cosmic censorship conjecture of the nonlinear electrodynamics black hole under the scattering of a charged complex scalar field.According to the energy and charge fluxes of the scalar field,the variations of this black hole’s energy and charge can be calculated during an infinitesimal time interval.With scalar field scattering,the variation of the black hole is calculated in the extended and normal phase spaces.In the normal phase space,the cosmological constant and the normalization parameter are fixed,and the first and second laws of thermodynamics can also be satisfied.In the extended phase space,the cosmological constant and the normalization parameter are considered as thermodynamic variables,and the first law of thermodynamics is valid,but the second law of thermodynamics is not valid.Furthermore,the weak cosmic censorship conjecture is both valid in the extended and normal phase spaces.展开更多
We calculate the scattering cross section of an electron with respect to the spontaneously produced laser radiation in the first free-electron laser (FEL) with quantum-wiggler electrodynamics (QWD). The cross sect...We calculate the scattering cross section of an electron with respect to the spontaneously produced laser radiation in the first free-electron laser (FEL) with quantum-wiggler electrodynamics (QWD). The cross section is 1016 times the Thomson cross section, confirming the result obtained by a previous analysis of the experimental data. A QWD calculation show that spontaneous emission in an FEL using only an electric wiggler can be very strong while amplification through net stimulated emission is practically negligible.展开更多
This theory aims beyond the possibilities being available from the Standard Model. Examples are given by the directly obtained rest masses of the elementary particles, the deduced values of the elementary charge and o...This theory aims beyond the possibilities being available from the Standard Model. Examples are given by the directly obtained rest masses of the elementary particles, the deduced values of the elementary charge and of the mass of the boson detected by CERN which are close to their experimental data, and by an incorporated spin of the photon.展开更多
Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, l...Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω/1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.展开更多
There exist a lot of controversial issues around the subject of SW(Scalar Waves)and the purpose of this white paper is to take an innovative theoretical approach to prove and backup up existence of such phenomena.We b...There exist a lot of controversial issues around the subject of SW(Scalar Waves)and the purpose of this white paper is to take an innovative theoretical approach to prove and backup up existence of such phenomena.We basically define this wave as a SLW(Scalar Longitudinal Wave),whose existence derives from the MCE(More Complete Electrodynamic)theory aspect of Maxwell’s classical electrodynamic equations.MCE falls into the QED(Quantum Electrodynamic)aspect of the Maxwell’s equations,in particular out of his four famous classical equations,our interest focuses on the one that is known to us as Faraday’s Law of the Maxwell’s Equation set.展开更多
We investigate the dynamics of a charged particle being kicked off from its circular orbit around a regular black hole by an incoming massive particle in the presence of magnetic field. The resulting escape velocity, ...We investigate the dynamics of a charged particle being kicked off from its circular orbit around a regular black hole by an incoming massive particle in the presence of magnetic field. The resulting escape velocity, escape energy and the effective potential are analyzed. It is shown that the presence of even a very weak magnetic field helps the charged particles in escaping the gravitational field of the black hole. Moreover the effective force acting on the particle visibly reduces with distance. Thus particle near the black hole will experience higher effective force as compared to when it is far away.展开更多
基金supported by the Ultrashort Quantum Beam Facility operation program(Grant No.140011)through APRI,GISTalso by the Institute of Basic Science(Grant No.IBSR038-D1).
文摘We present a 3+1 formulation of the light modes in nonlinear electrodynamics described by Plebanski-type Lagrangians,which include post-Maxwellian,Born-Infeld,ModMax,and Heisenberg-Euler-Schwinger QED Lagrangians.In nonlinear electrodynamics,strong electromagnetic fields modify the vacuum such that it acquires optical properties.Such a field-modified vacuum can possess electric permittivity,magnetic permeability,and a magneto-electric response,inducing novel phenomena such as vacuum birefringence.By exploiting the mathematical structures of Plebanski-type Lagrangians,we establish a streamlined procedure and explicit formulas to determine light modes,i.e.,refractive indices and polarization vectors for a given propagation direction.We also work out the light modes of the various Lagrangians for an arbitrarily strong magnetic field.The 3+1 formulation advanced in this paper has direct applications to the current vacuum birefringence research:terrestrial experiments using permanent magnets/ultra-intense lasers for the subcritical regime and astrophysical observation of X-rays from highly magnetized neutron stars for the near-critical and supercritical regimes.
基金supported by the National Natural Science Foundation of China (Grant No. 12105025)。
文摘Collective quantum states, such as subradiant and superradiant states, are useful for controlling optical responses in many-body quantum systems. In this work, we study novel collective quantum phenomena in waveguide-coupled Bragg atom arrays with inhomogeneous frequencies.For atoms without free-space dissipation, collectively induced transparency is produced by destructive quantum interference between subradiant and superradiant states. In a large Bragg atom array, multi-frequency photon transparency can be obtained by considering atoms with different frequencies. Interestingly, we find collectively induced absorption(CIA) by studying the influence of free-space dissipation on photon transport. Tunable atomic frequencies nontrivially modify decay rates of subradiant states. When the decay rate of a subradiant state equals to the free-space dissipation, photon absorption can reach a limit at a certain frequency. In other words, photon absorption is enhanced with low free-space dissipation, distinct from previous photon detection schemes. We also show multi-frequency CIA by properly adjusting atomic frequencies. Our work presents a way to manipulate collective quantum states and exotic optical properties in waveguide quantum electrodynamics(QED) systems.
文摘This work identifies the branch point, which was never explicit in EM treatises, from which came the choice of abandoning the Galilean transformations in favor of the Lorentz covariance, a path that originated the various relativistic theories. The need arising from the expanding Earth for a hydrodynamic mechanism for Newtonian and Coulomb fields is discussed. This hydrodynamic material mechanism is shown to constitute a completion of the Newton and Maxwell concepts of the fields, which were only a phenomenological description of physical reality. It is shown that the analogy between Maxwell’s equations and hydrodynamics cannot become a perfect correspondence. The lack of coupling of the electromagnetic field to the underlying material “causing field”—which induces hydrodynamical forces and accelerations observed only phenomenologically—gives rise to inaccuracies in the formulation of its equations, which are incorrect for Galilean covariance. But the most serious flaw in the original formulation of electromagnetism is the erroneous identification of the flow velocity of the field (variable as 1/r2) with the speed of light c, with which it was demonstrated that the fields of charges in motion contract in the direction of motion (the Heaviside ellipsoid, 1888, 1889). From this error, historically due to the incomplete development of many hydrodynamics sectors (a situation that persists today), came Fitz Gerald’s contractions and finally, the relativistic theories. Some future research lines are proposed for a return to realistic physics and a possible but still weak form of Galilean covariance.
文摘A theoretical analysis regarding active vibration control of rotating machines with current-controlled electrodynamic actuators between machine feet and steel frame foundation and with velocity feedback of the machine feet vibrations is presented.First,a generalized mathematical formulation is derived based on a state-space description which can be used for different kinds of models(1D,2D,and 3D models).It is shown that under special boundary conditions,the control parameters can be directly implemented into the stiffness and damping matrices of the system.Based on the generalized mathematical formulation,an example of a rotating machine—described by a 2D model—with journal bearings,flexible rotor,current-controlled electrodynamic actuators,steel frame foundation,and velocity feedback of the machine feet vibrations is presented where the effectiveness of the described active vibration control system is demonstrated.
文摘This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial neural network modeling techniques,the Authors interrogated a large database assembled from the existing research literature to assess the performance of twelve equation rules in predicting the undrained shear strength(s_(u))mobilized for remolded fine-grained soils at different values of liquidity index(I_(L))and water content ratio.Based on their analyses,the Authors proposed a simple and reportedly reliable correlation(i.e.,Eq.9 in their paper)for predicting s_(u) over the I_(L) range of 0.15 to 3.00.This article describes various shortcomings in the Authors’assembled database(including potentially anomalous data and covering an excessively wide I_(L) range in relation to routine geotechnical and transportation engineering applications)and their proposed s_(u)=f(I_(L))correlation.Contrary to the Authors’assertions,their proposed correlation is not reliable for fine-grained soils with consistencies in the general firm to stiff range(i.e.,for 0.15<I_(L)<0.40),increasingly overestimating s_(u) for reducing I_(L),and eventually predicting s_(u)→+∞for I_(L)→0.15+(while producing mathematically undefined s_(u) for I_(L)<0.15),thus rendering their correlation unconservative and potentially leading to unsafe geotechnical designs.Exponential or regular-power type s_(u)=f(I_(L))models are more s_(u)itable when developing correlations that are applicable over the full plastic range(of 0<I_(L)<1),thereby providing reasonably conservative s_(u) predictions for use in the preliminary design for routine geotechnical engineering applications.
基金Supported by National Natural Science Foundation of China(Grant No.11872033)Beijing Municipal Natural Science Foundation(Grant No.3172017)。
文摘Many experiments have supported the contact models,such as the GW and MB models,but the majority of previous validations have been performed under light loads,resulting in a linear relationship between normal force and contact area.However,the real contact area fraction should never equal one;there must be a limit smaller than the apparent area,implying that the real contact area cannot increase linearly indefinitely.In this paper,the real contact area between two polymethylmethacrylate(PMMA)blocks under heavy load is measured using the total reflection method,and the contact area is analyzed using the image processing method.The results show that the real contact area increases with normal load linearly in light loads but non-linearly in heavy loads;the number of contact spots increases with load linearly in light loads but also non-linearly in heavy loads,synchronous with the change in the real contact area.The GW,MB,and Zhao,Maietta,and Chang(ZMC)models were used to predict the experiment results,but none of them predicted the non-linear stage.A revised GW model based on the bulk deformation hypothesis performs better in predicting the non-linear stage.The study’s findings can be applied to PMMA or other similar materials,and they can serve as a useful reference for future research on the contact mechanisms of other materials.
基金This work was supported by the Youth Project of Hunan Provincial Department of Education(Grant No.22B0334)the Bridge and Tunnel Engineering Innovation Project of Changsha University of Science&Technology(Grant No.11ZDXK11)and the Practical Innovation and Entrepreneurship Capacity Improvement Plan of Changsha University of Science and Technology(Grant No.CLSJCX23029).
文摘Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkle of films on non-linear elastic substrates has received less attention.In this article,a unique wrinkle evolution of the film-substrate system with a J-shaped non-linear stress-strain relation is reported.The result shows that a concave hexagonal array pattern is formed with the shrinkage strain of the film-substrate systems developing.As the interconnection of hexagonal arrays,a unit cell ridge network appears with properties such as chirality and helix.The subparagraph maze pattern formed with high compression is mainly composed of special single-cell ridge networks such as spiral single cores,chiral double cores,and combined multi-cores.This evolutionary model is highly consistent with the results of experiments,and it also predicts wrinkle morphology that has not yet been reported.These findings can serve as a novel explanation for the surface wrinkle of biological soft tissue,as well as provide references for the preparation of artificial biomaterials and programmable soft matter.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504272,11774262,11474003,and 11504003)the National Key Basic Research Special Foundation(Grant No.2016YFA0302800)+2 种基金the Joint Fund of the National Natural Science Foundation of China(Grant No.U1330203)the Fund from the Shanghai Science and Technology Committee(STCSM)(Grant No.18JC1410900)the Natural Science Foundation of Anhui Province,China(Grant Nos.1408085MA19 and 1608085ME102)
文摘We theoretically study the collective decay of two atoms trapped in a single mode cavity and we describe the evolution of the population of Dicke states. We show that the collective decay property is strongly dependent on the phase of atomic radiation and the speeding up of collective decay can only be observed in a bad cavity regime. For in-or out-phase case,this occurs due to the quantum interference enhancement, no matter which atom is excited initially. For π/2 phase, the speeding up of collective decay takes place if the first atom is excited at the beginning. However, it disappears due to the quantum interference cancellation if the second atom is excited. Compared with the in-phase and out-phase cases,we also show that the speeding up of collective decay can be significantly enhanced in strong coupling regime for π/2 phase, although one atom is decoupled to the cavity in this condition. The study presented here is helpful to understand the physical mechanism of collective decay in cavity quantum electrodynamics and it provides a useful method to control the collective decay phenomenon via quantum interference effect.
基金supported by the National Natural Science Foundation of China (Grant No 60667001)
文摘This paper presents a scheme for implementing a Fredkin gate on three modes of a cavity. The scheme is based on the dispersive atom-cavity interaction. By modulating the cavity frequency and the atomic transition frequency appropriately, it obtains the effective form of nonlinear interaction between photons in the three-mode cavity. This availability is testified via numerical analysis. It also considers both the situations with and without dissipation.
基金Project supported by the National Fundamental Research Program of China(Grant No.2011cba00200)the National Natural Science Foundation of China(Grant No.11274295)the Doctor Foundation of Education Ministry of China(Grant No.20113402110059)
文摘We theoretically study the system of a superconducting transmission line resonator coupled to two interacting super- conducting flux qubits. It is shown that under certain conditions the resonator mode can be tuned to two-photon resonance between the ground state and the highest excited state while the middle excited states are far-off resonance. Furthermore, we study the steady-state properties of the flux qubits and resonator, such as the photon statistics, the spectrum and squeezing of the resonator, and demonstrate that two-photon laser can be implemented with current experimental technology.
基金Project supported by the National Natural Science Foundation of China (No. 60304009) and the Natural Science Foundation of Hebei Province of China (No. F2005000385)
文摘An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principles (GVPs) are established, which directly leads to all four Maxwell's equations, two intensity-potential equations, two constitutive equations, and eight boundary conditions. A family of constrained variational principles is derived sequentially. As additional verifications, two degenerated forms are obtained, equivalent to two known variational principles. Two modified GVPs are given to provide the hybrid finite element models for the present problem.
基金Supported by the National Natural Science Foundation of China under Grant No.10873004the Program for Excellent Talents in Hunan Normal University,the State Key Development Program for Basic Research Program of China under Grant No.2010CB832803+1 种基金the Key project of the National Natural Science Foundation of China under Grant No.10935013Construct Program of the National Key Discipline and the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0964
文摘In this paper we investigate the scalar field evolution in the dyadosphere spacetime by using the third-order WKB approximation. We find that the coupling term between the gravitation and the nonlinear electrodynamics makes the scalar field decay more quickly and it also makes the scalar field oscillate more slowly. On the o'ther words, this coupling term takes effect on the scalar field evolution as a damping factor. At the same time these effects become more obvious for the scalar field with higher angle quantum number.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92265113,12074368,and 12034018).
文摘In this theoretical work,we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator.We systematically study the dependence of the quadruple coupling strength and the qubit decoherence rate and point out the optimized operating position of the hybrid system.According to the transmission given by the input-output theory,the signatures in the resonator spectrum are predicted.Furthermore,based on the parameters already achieved in previous works,we prove that the device described in this paper can achieve the strong coupling limit,i.e.,this approach can be used for system extension under the existing technical conditions.Our results show an effective and promotable approach to couple quantum dot structures in plane with the resonator and propose a meaningful extension method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10875003).
文摘Quantum electrodynamics in a laser is formulated, in which the electron–laser interaction is exactly considered, while the interaction of an electron and a single photon is considered by perturbation. The formulation is applied to the electron– laser collisions. The effect of coherence between photons in the laser is therefore fully considered in these collisions. The possibility of γ-ray laser generation by use of this kind of collision is discussed.
基金supported in part by NSFC(Grant No.11375121,11747171,11747302 and 11847305)Natural Science Foundation of Chengdu University of TCM(Grants No.ZRYY1729 and ZRQN1656)+2 种基金Discipline Talent Promotion Program of Xinglin Scholars(Grant No.QNXZ2018050)The Key Fund Project for Education Department of Sichuan(Grant No.18ZA0173)Sichuan University Students Platform for Innovation and Entrepreneurship Training Program(Grant No.C2019104639).
文摘In this paper,we study the thermodynamics and the weak cosmic censorship conjecture of the nonlinear electrodynamics black hole under the scattering of a charged complex scalar field.According to the energy and charge fluxes of the scalar field,the variations of this black hole’s energy and charge can be calculated during an infinitesimal time interval.With scalar field scattering,the variation of the black hole is calculated in the extended and normal phase spaces.In the normal phase space,the cosmological constant and the normalization parameter are fixed,and the first and second laws of thermodynamics can also be satisfied.In the extended phase space,the cosmological constant and the normalization parameter are considered as thermodynamic variables,and the first law of thermodynamics is valid,but the second law of thermodynamics is not valid.Furthermore,the weak cosmic censorship conjecture is both valid in the extended and normal phase spaces.
文摘We calculate the scattering cross section of an electron with respect to the spontaneously produced laser radiation in the first free-electron laser (FEL) with quantum-wiggler electrodynamics (QWD). The cross section is 1016 times the Thomson cross section, confirming the result obtained by a previous analysis of the experimental data. A QWD calculation show that spontaneous emission in an FEL using only an electric wiggler can be very strong while amplification through net stimulated emission is practically negligible.
文摘This theory aims beyond the possibilities being available from the Standard Model. Examples are given by the directly obtained rest masses of the elementary particles, the deduced values of the elementary charge and of the mass of the boson detected by CERN which are close to their experimental data, and by an incorporated spin of the photon.
文摘Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω/1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.
文摘There exist a lot of controversial issues around the subject of SW(Scalar Waves)and the purpose of this white paper is to take an innovative theoretical approach to prove and backup up existence of such phenomena.We basically define this wave as a SLW(Scalar Longitudinal Wave),whose existence derives from the MCE(More Complete Electrodynamic)theory aspect of Maxwell’s classical electrodynamic equations.MCE falls into the QED(Quantum Electrodynamic)aspect of the Maxwell’s equations,in particular out of his four famous classical equations,our interest focuses on the one that is known to us as Faraday’s Law of the Maxwell’s Equation set.
文摘We investigate the dynamics of a charged particle being kicked off from its circular orbit around a regular black hole by an incoming massive particle in the presence of magnetic field. The resulting escape velocity, escape energy and the effective potential are analyzed. It is shown that the presence of even a very weak magnetic field helps the charged particles in escaping the gravitational field of the black hole. Moreover the effective force acting on the particle visibly reduces with distance. Thus particle near the black hole will experience higher effective force as compared to when it is far away.