The significance of soil mineral properties and secondary environmental conditions such as pH, temperature, ionic strength and time in the partitioning of eight selected polychlorinated biphenyl(PCB) congeners between...The significance of soil mineral properties and secondary environmental conditions such as pH, temperature, ionic strength and time in the partitioning of eight selected polychlorinated biphenyl(PCB) congeners between aqueous solution and soil particles with different grain sizes was studied. The mineral properties of a model soil sample were determined, and Brunauer–Emmett–Teller(BET) adsorption–desorption isotherms were employed to observe the surface characteristics of the individual modeled soil particles.Batch adsorption experiments were conducted to determine the sorption of PCBs onto soil particles of different sizes. The results revealed that the sorption of PCB congeners onto the soil was dependent on the amount of soil organic matter, surface area, and pore size distribution of the various individual soil particles. Low pH favored the sorption of PCBs,with maximum sorption occurring between pH 6.5 and 7.5 with an equilibration period of 8 hr.Changes in the ionic strength were found to be less significant. Low temperature favored the sorption of PCBs onto the soil compared to high temperatures. Thermodynamic studies showed that the partition coefficient(K_d) decreased with increasing temperature, and negative and low values of ΔH° indicated an exothermic physisorption process. The data generated is critical and will help in further understanding remediation and cleanup strategies for polluted water.展开更多
Soil quality is one of the most important factors in sustaining the global biosphere and developing sustainable agricultural practices. Land use and management practices greatly impact the direction and degree of soil...Soil quality is one of the most important factors in sustaining the global biosphere and developing sustainable agricultural practices. Land use and management practices greatly impact the direction and degree of soil quality changes in time and space. Understanding the effects of land use and management practices on soil quality and its indicators has been identified as one of the most important goals for modern soil science. Soil quality mapping study represents a method for assessing and mapping soil quality changes in time and space in small units. For the present study, changes in the physical, chemical parameters and nematode density of the soils in the rural and urban areas of Thiruvananthapuram district, Kerala, were determined. The soil samples were collected from seven different categories of contaminated soils namely coastal area, sewage disposal area, industrial area, road-side area, agricultural area, market area and gasoline station area, and also from two control stations in rural and urban areas. The soil physico-chemical parameters and nematode density were determined. Geostatistics combined with GIS was applied to analyze the spatial variability of soil physico-chemical characteristics and nematode density. This soil quality mapping study provides a basis for identifying tension zones and serves as a triggering mechanism for implementation of soil contamination mitigating strategies.展开更多
In its cationic,trivalent form,Chromium(Cr)it is a micronutrient,and exhibits low environmental mobility.In hexavalent form,however,it is a human carcinogen and also highly mobile.Climate is a key environmental factor...In its cationic,trivalent form,Chromium(Cr)it is a micronutrient,and exhibits low environmental mobility.In hexavalent form,however,it is a human carcinogen and also highly mobile.Climate is a key environmental factor controlling weathering rates and stability of primary and secondary Cr-bearing minerals.Knowledge of Cr oxidation state and mineral residence is therefore essential to estimating the risk posed by Cr in serpentinites,chromite mine wastes,and soils developed on these parent materials.X-ray absorption spectroscopy(XAS)is currently the best available technique for determination of the relative abundance of Cr(III)and Cr(VI)in situ(that is,without digestion of solid phases).A brief review of relevant XAS studies of is presented below,focusing on studies in tropical climates1,as they will be most relevant to eastern Cuba’s extensively serpentinized ophiolite belt.Cr(III)-bearing spinels are usually the dominant and most refractory Cr host in ultramafic rocks.Previous XAS studies2 indicate that in tropical climates,Cr-spinels weather rapidly to form Cr(III)-bearing secondary Fe(III)(hydr)oxides(goethite,hematite).Manganese(Mn)is also enriched in ultramafic rocks2;as Mn(IV),it can also co-precipitate with Fe(III)(hydr)oxides,or form its own secondary(hydr)oxides.A previous study found up to 20%Cr(VI)in in a tropical,serpentine soil that contained substantial Mn,and a strong correlation between the*amounts of Cr(VI)and Mn(IV)in the soil profile2.Theresults of several XAS studies suggest that a close association of Mn(IV)and Cr(III)in secondary Fe(hydr)oxides is necessary for oxidation of Cr(III)to Cr(VI)via electron transfer reactions with Mn(IV);however,additional XAS studies have shown that organic matter3and Cr-bearing aluminosilicates4 may also be important sources of Cr(III)to the environment under specific conditions.The stability and fate of Cr has not been studied in detail for these two host phase types,to the best of our knowledge.Access to XAS facilities to perform Cr geochemical experiments is limited and will only become more so in the future.We are working to develop and apply(micro)Raman spectroscopy to evaluate Cr oxidation state and mineral residence(in crystalline and amorphous materials).In addition to standard Raman scattering,we are employing resonance Raman(785 nm laser)to enhance signal from Cr(VI)-bearing phases and laser-stimulated photoluminescence to identify Cr(III)associated with Al-rich alteration products展开更多
This study aims to characterize the physical and mechanical properties of the soils from the Kenendé,Limbita 1,and Limbita 2 sites,located in the Dubréka prefecture,to develop a composite construction materi...This study aims to characterize the physical and mechanical properties of the soils from the Kenendé,Limbita 1,and Limbita 2 sites,located in the Dubréka prefecture,to develop a composite construction material based on soil and plant fibers that is more resistant to climatic and environmental conditions.To achieve this,soil samples were collected and subjected to various laboratory tests.The study assessed the physical and mechanical properties of these soils to develop a composite construction material incorporating soil and plant fibers.Laboratory tests revealed variations in water absorption capacity and compressive strength depending on the applied pressure(3,4,5 MPa)and the sample’s condition(dry or wet).After a 30-day maturation period,Kenendéexhibited a maximum dry-state strength of 2.66 MPa,while Limbita 1 and Limbita 2 recorded 0.95 MPa and 2.57 MPa,respectively.Soils compacted under high pressure demonstrated better performance,particularly in dry conditions.These results confirm the potential of the soils from the three sites for producing durable construction materials suitable for local climatic conditions,provided they undergo appropriate treatment and maturation,thereby contributing to sustainable construction in Guinea.展开更多
Peat soil is a loose,moisture-rich organic matter accumulation formed by the deposition of plants in swamps and lakes after their death.It is characterized by high moisture content,large void ratio,high compressibilit...Peat soil is a loose,moisture-rich organic matter accumulation formed by the deposition of plants in swamps and lakes after their death.It is characterized by high moisture content,large void ratio,high compressibility,and strong rheological properties.These characteristics result in a complex consolidation process.A systematic understanding of the consolidation mechanism of peat soil is essential for elucidating its consolidation behavior.Previous studies have failed to provide consistent information on the microscopic morphology of peat soil.Moreover,quantitative studies on pore structure changes during peat soil consolidation remain lacking.To resolve these research gaps,the microscopic morphology and pore types of peat,highly organic peaty soil,and medium organic peaty soil from certain regions of Yunnan province,China,were observed and analyzed using scanning electron microscopy.Additionally,quantitative research on pore structure changes during peat soil consolidation was conducted.The results show that the humic acid in peat soil of Yunnan province has no pores,and there is no pore between humic acid and clay minerals.There are three typical pore structures,and the three typical pores were quantitatively analyzed.During consolidation,the consolidation deformation of peat soil is primarily caused by the internal pore compression of plant residues and pores between plant residues.At the same time,the revelation of the differentiated influence mechanism of load levels on the compression of inter/intra-plant residue pores.The decrease in the proportion of pores between plant residues first increased and then decreased with an increase in load,reaching a peak between 100-200 kPa.The decrease in pores inside the plant residues increased with an increasing load.Additionally,pore compression between the plant residues under different load levels primarily caused the compression deformation of Dali peat during the primary consolidation stage.By contrast,the pore compression inside the plant residues primarily caused the compression deformation during the secondary consolidation stage.展开更多
A column study was carried out to assess the influence of accompanying anions on potassium (K) leaching at potato growing sites with different soil textures (sandy loam and clay loam) in northwestern India. Potass...A column study was carried out to assess the influence of accompanying anions on potassium (K) leaching at potato growing sites with different soil textures (sandy loam and clay loam) in northwestern India. Potassium was applied in the top 15 cm layer of soil column at 30 and 60 mg K kg-1 through different sources having different accompanying anions (CI-, SO^-, NO3 and H2PO4-). Maximum K was retained in the top 0-15 cm layer with a sharp decrease in K content occurring in 15 30 cm layer of the soil column. The trend was similar for both levels of applied K as well as frequency of leaching and soil type. The decrease of K content in soil column after four leaching events was maximum in case of Khanaura sandy loam, while only minor decrease was observed in Hundowal clay loam when K was applied at 60 mg K kg-1, indicating higher potential of clay rich soil to adsorb K. In general, the K leaching in presence of the accompanying anions followed the order of SO4^2-≤ H2PO42- 〈 NO3 = Cl-. Highest 1 mol·L^-1 CH3COONH4-extractable K was retained when K was applied along with SO4^2- and H2PO4 anions, and the least was retained when accompanying anion was Cl-. The influence of anions was more pronounced in the light textured soil and at high amounts of K application. Higher levels of K application resulted in higher losses of K, especially in sandy loam soil as observed from the leachate concentration. Among the different K sources, the maximum amount of K leaching was noticed in the soil column amended with KC1. After four leachings, the maximum amount of K leached out was 6.40 mg L-1 in Hundowal clay loam and 9.29 mg L-1 in Khanaura sandy loam at 60 mg K kg-1 of soil application through KC1. These concentrations were lower than the recommended guideline of the World Health Organisation (12.00 mg L-1).展开更多
Landuse change from native prairie to managed agriculture can have substantial impacts on soil nutrient properties. Nutrient release from soil organic matter decomposition is the soil’s inherent source of long-term f...Landuse change from native prairie to managed agriculture can have substantial impacts on soil nutrient properties. Nutrient release from soil organic matter decomposition is the soil’s inherent source of long-term fertility</span><span style="font-family:Verdana;font-size:12px;">;</span><span style="font-family:Verdana;font-size:12px;"> thus it is imperative to understand the effects of continued landuse over </span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;">time to avoid mistaking actual soil property changes with simple inter-annual </span><span><span style="font-size:12px;font-family:Verdana;">variability from one year to the next. The objective of this study was to evaluate the effects of landuse (</span><i><span style="font-size:12px;font-family:Verdana;">i.e.</span></i><span style="font-size:12px;font-family:Verdana;"> managed agriculture and native prairie) in two contrasting physiographic regions (</span><i><span style="font-size:12px;font-family:Verdana;">i.e.</span></i><span style="font-size:12px;font-family:Verdana;"> the Ozark Highlands region of northwest Arkansas and the Grand Prairie region of east-central Arkansas) on the change in extractable soil nutrients over a 15-yr period from 2001 to 2016. Extractable soil Ca, Mg, and Zn increased at least two times more over time (</span><i><span style="font-size:12px;font-family:Verdana;">P</span></i><span style="font-size:12px;font-family:Verdana;"> < 0.05) under cultivated agriculture in the Grand Prairie than under native prairie in the Grand Prairie or either landuse in the Ozark Highlands. </span></span></span><span style="font-family:Verdana;font-size:12px;">Averaged across landuse</span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;">, extractable soil S increased nine times more over time (</span><i><span style="font-size:12px;font-family:Verdana;">P</span></i><span style="font-size:12px;font-family:Verdana;"> < 0.05) in the Ozark Highlands than in the Grand Prairie, while extractable soil Na and Mn increased at least six times more over time (</span><i><span style="font-size:12px;font-family:Verdana;">P</span></i><span style="font-size:12px;font-family:Verdana;"> < 0.05) in the Grand Prairie than in the Ozark Highlands. </span></span><span style="font-family:Verdana;font-size:12px;">Averaged across region,</span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;"> extractable soil Mn increased 2.5 times more over time (</span><i><span style="font-size:12px;font-family:Verdana;">P</span></i><span style="font-size:12px;font-family:Verdana;"> < 0.05) under native prairie than under agricultural landuse. Results from this long-term field study clearly demonstrate how landuse and regional soil characteristics can affect near-surface soil nutrient contents, which should be taken into consideration when implementing conservation and/or ecosystem restoration activities.展开更多
In coordination of the construction of concealed work of levee project, the research on the soil quality of Jingnan levee in Hubei province was carried out through test. The results demonstrate: ① the Jingnan levee e...In coordination of the construction of concealed work of levee project, the research on the soil quality of Jingnan levee in Hubei province was carried out through test. The results demonstrate: ① the Jingnan levee embankment is in bad quality, the compaction degree of most levee sections doesn’t reach 92%; the average compressive coefficient of the levee backfilled soils is about 0.3 MPa; the seepage coefficients are 10\+ -5 ~10\+ -6 cm/s generally; the levee body was compacted unevenly; ② the soil layers of the levee foundation are distributed complicatedly and generally in low density; the void ratios of various soils are mostly in 0.7~1, indicating that the foundation soils are generally in loose state; ③ the pH value of levee body and foundation is 7.05~8.95, attributing to weak alkaline and not producing significant influence on liquid-plastic limit and shear strength of soils, the content of strongly soluble salt of levee foundation soils is 0.01%~0.52% and will not produce great influence on the mechanical behaviours of soils.展开更多
Fallout volcanic deposits of SommaVesuvius(Campania,southern Italy),characterized by the presence of layers with contrasting textural and hydraulic properties,are frequently affected by shallow landslides during rainw...Fallout volcanic deposits of SommaVesuvius(Campania,southern Italy),characterized by the presence of layers with contrasting textural and hydraulic properties,are frequently affected by shallow landslides during rainwater infiltration.The soils of the stratigraphic sequence present intraparticle pores,originated by the gases escaped during magma decompression in the volcanic conduit,thus are characterized by double porosity(i.e.,intraparticle and interparticle pores),which is expected to affect their hydraulic behaviour,and to play a key role in rainwater infiltration through layered deposits.To understand the effect of double porosity on the hydraulic behaviour of the involved soils,controlled experiments have been carried out in an infiltration column.The experimental apparatus is provided with newly designed non-invasive Time Domain Reflectometry(TDR)probes,not buried in the investigated soil layers so as to minimize disturbance to the flow,allowing water content measurement during vertical flow processes.Specifically,transient flow experiments are carried out through reconstituted specimens of black scoriae and grey pumices,both loose pyroclastic granular soils from fallout deposits of Somma-Vesuvius,featuring double porosity with different pore size distributions,that were estimated by X-ray tomography and Mercury Intrusion Porosimetry.The experimental results highlight the effects of the double porosity and clearly indicate the different behaviour of the two soils during wetting and drying processes,mainly related to the different dimensions of intraparticle pores.展开更多
Based on elasticity and the theory of saturated porous media, and regarding the pile and the soil as a single phase elastic and a saturated viscoelastic media, respectively, the dynamical behavior of vertical vibratio...Based on elasticity and the theory of saturated porous media, and regarding the pile and the soil as a single phase elastic and a saturated viscoelastic media, respectively, the dynamical behavior of vertical vibration of an end-bearing pile in a saturated viscoelastic soil layer is investigated in the frequency domain using the Helmholtz decomposition and variable separation method. The axisymmetrical analytical solutions for vertical vibrations of the pile in a saturated viscoelastic soil layer are obtained, and the analytical expression of the dynamical complex stiffness of the pile top is presented. Responses of dynamic stiffness factor and equivalent damping of pile top with respect to the frequency are shown in figures using a numerical method. Effects of the saturated soil parameters, modulus ratio of the pile to soil, slenderness ratio of pile and pile's Poisson ratio, etc. on the stiffness factor and damping are examined. It is shown that, due to the effect of the transversal deformation of the pile and the radial force of the saturated viscoelastic soil acting on the pile, the dynamic stiffness factor and the damping derived from the axisymmetrical solution are greatly different from those derived from the classical Euler-Bernoulli rod model, especially at some specific excitation frequencies. Therefore, there are limitations on applicability of the Euler-Bernoulli rod model in analyzing verticai vibration of the pile. More accurate analysis should be based on a three-dimensional model.展开更多
Soil acidifications become one of the main causes restricting the sustainable development of agriculture and causing issues of agricultural product safety.In order to explore the effect of different acidification on s...Soil acidifications become one of the main causes restricting the sustainable development of agriculture and causing issues of agricultural product safety.In order to explore the effect of different acidification on soil cadmium(Cd)availability,soil pot culture and hydroponic(soil potting solution extraction)were applied,and non-invasive micro-test technique(NMT)was combined.Here three different soil acidification processes were simulated,including direct acidification by adding sulfuric acid(AP1),acid rain acidification(AP2)by adding artificial simulated acid rain and excessive fertilization acidification by adding(NH_(4))_(2)SO_(4)(AP3).The results showed that for direct acidification(AP1),DTPA-Cd concentration in field soils in Liaoning(S1)and Zhejiang(S2)increased by 0.167-0.217 mg/kg and 0.181-0.346 mg/kg,respectively,compared with control group.When soil pH decreased by 0.45 units in S1,the Cd content of rice stems,leaves and roots increased by 0.48 to 6.04 mg/kg and 2.58 to 12.84mg/kg,respectively,When the pH value of soil S1 and S2 decreased by 0.20 units,the average velocity of Cd^(2+)at 200μm increased by 10.03-33.11 pmol/cm~2/sec and 21.33-52.86pmol/cm^(2)/sec,respectively,and followed the order of AP3>AP2>AP1.In summary,different acidification measures would improve the effectiveness of Cd,under the same pH reduction condition,fertilization acidification increased Cd availability most significantly.展开更多
Regressive models were obtained by employing '311 B' and '3414' optimal regressive desingns through 5 year (1993~1997) field experiment,and by datum processing with computer.These models express the...Regressive models were obtained by employing '311 B' and '3414' optimal regressive desingns through 5 year (1993~1997) field experiment,and by datum processing with computer.These models express the relationships between corn yields in high,middle and low yield areas and N,P,and K application rates in black soil.By analysis to the models,the fertilizer application rates for maximum yield and optimal yield were achieved.展开更多
Red mud, the by-product of aluminum production, has been regarded as a problematic residue all over the world. Its storage involves risks as evidenced by the Ajka red mud spill,an accident in Hungary where the slurry ...Red mud, the by-product of aluminum production, has been regarded as a problematic residue all over the world. Its storage involves risks as evidenced by the Ajka red mud spill,an accident in Hungary where the slurry broke free, flooding the surrounding areas. As an immediate remediation measure more than 5 cm thick red mud layer was removed from the flooded soil surface. The removed red mud and soil mixture(RMSM) was transferred into the reservoirs for storage. In this paper the application of RMSM is evaluated in a field study aiming at re-utilizing waste, decreasing cost of waste disposal and providing a value-added product. The purpose was to investigate the applicability of RMSM as surface layer component of landfill cover systems. The field study was carried out in two steps: in lysimeters and in field plots. The RMSM was mixed at ratios ranging between 0 and 50% w/w with low quality subsoil(LQS) originally used as surface layer of an interim landfill cover. The characteristics of the LQS + RMSM mixtures compared to the subsoil(LQS) and the RMSM were determined by physical–chemical, biological and ecotoxicological methods. The addition of RMSM to the subsoil(LQS) at up to 20% did not result any ecotoxic effect, but it increased the water holding capacity. In addition, the microbial substrate utilization became about triple of subsoil(LQS) after 10 months. According to our results the RMSM mixed into subsoil(LQS) at20% w/w dose may be applied as surface layer of landfill cover systems.展开更多
Small H-beams such as the No.14-20 I-steel can be inserted into soil-cement retaining walls to form small H-beam soil-cement compound walls, functioning both as a retaining wall and a cutoff wall for braced structure ...Small H-beams such as the No.14-20 I-steel can be inserted into soil-cement retaining walls to form small H-beam soil-cement compound walls, functioning both as a retaining wall and a cutoff wall for braced structure excavations. Being different from the mixed soil-cement wall (SMW), the interaction between soil-cement and small H-steel is very good. We have carried out a series of bending experiments on small H-beams in soil-cement model compound beams to study the mechanism of interactions. The results show that the interaction between H-beams and soil-cement is very good, whether the H-beam is single or double. Joint forms of double H-beams at one end have little effect on both the contribution coefficient and on ultimate deflection before cracking. But after cracking, the joint forms greatly affect the contribution coefficient. We conclude that the rigid joint girder for double H-beams is a better choice in oractice.展开更多
The first area is rock instability in conglomerates walls, and the second area is soil instability in a slope composed of sand gravel and shale in the south of the study area. In the first area, rock slopes were studi...The first area is rock instability in conglomerates walls, and the second area is soil instability in a slope composed of sand gravel and shale in the south of the study area. In the first area, rock slopes were studied by fractures condition, slope morphology, measured engineering features of rocks, and then interpreted by Dips software to define the fracture types for analysis of block toppling. The rock slope of the area was modeled by Rock plan by adding water penetration and earthquake. The results showed that in dry condition these slopes were stable, but by penetrating water and saturation of the open spaces of the fractures, the block toppling will occur. Also, seismic activities in the area caused the instability of the slopes, and landslide will happen. In the second area, landslides were spoon-shaped type. To investigate the soil slope stability, the condition of slope was modeled by using soil engineering properties and measuring the morphological condition of the slope such as slope dip, layers thickness, layers dip and slope elevation. It was shown instability of the soil slopes. To stabilize the sliding areas, the dip changing method and formation of stepped-style slope were done. However, the new condition changed the formation of sliding areas in the upper most part of the stairs. The retaining walls formed from the local materials were applied to the slope to provide the desire stability.展开更多
The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq....The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.展开更多
文摘The significance of soil mineral properties and secondary environmental conditions such as pH, temperature, ionic strength and time in the partitioning of eight selected polychlorinated biphenyl(PCB) congeners between aqueous solution and soil particles with different grain sizes was studied. The mineral properties of a model soil sample were determined, and Brunauer–Emmett–Teller(BET) adsorption–desorption isotherms were employed to observe the surface characteristics of the individual modeled soil particles.Batch adsorption experiments were conducted to determine the sorption of PCBs onto soil particles of different sizes. The results revealed that the sorption of PCB congeners onto the soil was dependent on the amount of soil organic matter, surface area, and pore size distribution of the various individual soil particles. Low pH favored the sorption of PCBs,with maximum sorption occurring between pH 6.5 and 7.5 with an equilibration period of 8 hr.Changes in the ionic strength were found to be less significant. Low temperature favored the sorption of PCBs onto the soil compared to high temperatures. Thermodynamic studies showed that the partition coefficient(K_d) decreased with increasing temperature, and negative and low values of ΔH° indicated an exothermic physisorption process. The data generated is critical and will help in further understanding remediation and cleanup strategies for polluted water.
文摘Soil quality is one of the most important factors in sustaining the global biosphere and developing sustainable agricultural practices. Land use and management practices greatly impact the direction and degree of soil quality changes in time and space. Understanding the effects of land use and management practices on soil quality and its indicators has been identified as one of the most important goals for modern soil science. Soil quality mapping study represents a method for assessing and mapping soil quality changes in time and space in small units. For the present study, changes in the physical, chemical parameters and nematode density of the soils in the rural and urban areas of Thiruvananthapuram district, Kerala, were determined. The soil samples were collected from seven different categories of contaminated soils namely coastal area, sewage disposal area, industrial area, road-side area, agricultural area, market area and gasoline station area, and also from two control stations in rural and urban areas. The soil physico-chemical parameters and nematode density were determined. Geostatistics combined with GIS was applied to analyze the spatial variability of soil physico-chemical characteristics and nematode density. This soil quality mapping study provides a basis for identifying tension zones and serves as a triggering mechanism for implementation of soil contamination mitigating strategies.
文摘In its cationic,trivalent form,Chromium(Cr)it is a micronutrient,and exhibits low environmental mobility.In hexavalent form,however,it is a human carcinogen and also highly mobile.Climate is a key environmental factor controlling weathering rates and stability of primary and secondary Cr-bearing minerals.Knowledge of Cr oxidation state and mineral residence is therefore essential to estimating the risk posed by Cr in serpentinites,chromite mine wastes,and soils developed on these parent materials.X-ray absorption spectroscopy(XAS)is currently the best available technique for determination of the relative abundance of Cr(III)and Cr(VI)in situ(that is,without digestion of solid phases).A brief review of relevant XAS studies of is presented below,focusing on studies in tropical climates1,as they will be most relevant to eastern Cuba’s extensively serpentinized ophiolite belt.Cr(III)-bearing spinels are usually the dominant and most refractory Cr host in ultramafic rocks.Previous XAS studies2 indicate that in tropical climates,Cr-spinels weather rapidly to form Cr(III)-bearing secondary Fe(III)(hydr)oxides(goethite,hematite).Manganese(Mn)is also enriched in ultramafic rocks2;as Mn(IV),it can also co-precipitate with Fe(III)(hydr)oxides,or form its own secondary(hydr)oxides.A previous study found up to 20%Cr(VI)in in a tropical,serpentine soil that contained substantial Mn,and a strong correlation between the*amounts of Cr(VI)and Mn(IV)in the soil profile2.Theresults of several XAS studies suggest that a close association of Mn(IV)and Cr(III)in secondary Fe(hydr)oxides is necessary for oxidation of Cr(III)to Cr(VI)via electron transfer reactions with Mn(IV);however,additional XAS studies have shown that organic matter3and Cr-bearing aluminosilicates4 may also be important sources of Cr(III)to the environment under specific conditions.The stability and fate of Cr has not been studied in detail for these two host phase types,to the best of our knowledge.Access to XAS facilities to perform Cr geochemical experiments is limited and will only become more so in the future.We are working to develop and apply(micro)Raman spectroscopy to evaluate Cr oxidation state and mineral residence(in crystalline and amorphous materials).In addition to standard Raman scattering,we are employing resonance Raman(785 nm laser)to enhance signal from Cr(VI)-bearing phases and laser-stimulated photoluminescence to identify Cr(III)associated with Al-rich alteration products
文摘This study aims to characterize the physical and mechanical properties of the soils from the Kenendé,Limbita 1,and Limbita 2 sites,located in the Dubréka prefecture,to develop a composite construction material based on soil and plant fibers that is more resistant to climatic and environmental conditions.To achieve this,soil samples were collected and subjected to various laboratory tests.The study assessed the physical and mechanical properties of these soils to develop a composite construction material incorporating soil and plant fibers.Laboratory tests revealed variations in water absorption capacity and compressive strength depending on the applied pressure(3,4,5 MPa)and the sample’s condition(dry or wet).After a 30-day maturation period,Kenendéexhibited a maximum dry-state strength of 2.66 MPa,while Limbita 1 and Limbita 2 recorded 0.95 MPa and 2.57 MPa,respectively.Soils compacted under high pressure demonstrated better performance,particularly in dry conditions.These results confirm the potential of the soils from the three sites for producing durable construction materials suitable for local climatic conditions,provided they undergo appropriate treatment and maturation,thereby contributing to sustainable construction in Guinea.
基金supported by the Fundamental Research Funds for the Central Universities(2025JBZY019)the Funding of Key Research and Development Project of CCCC(2021-ZJKJ-18).
文摘Peat soil is a loose,moisture-rich organic matter accumulation formed by the deposition of plants in swamps and lakes after their death.It is characterized by high moisture content,large void ratio,high compressibility,and strong rheological properties.These characteristics result in a complex consolidation process.A systematic understanding of the consolidation mechanism of peat soil is essential for elucidating its consolidation behavior.Previous studies have failed to provide consistent information on the microscopic morphology of peat soil.Moreover,quantitative studies on pore structure changes during peat soil consolidation remain lacking.To resolve these research gaps,the microscopic morphology and pore types of peat,highly organic peaty soil,and medium organic peaty soil from certain regions of Yunnan province,China,were observed and analyzed using scanning electron microscopy.Additionally,quantitative research on pore structure changes during peat soil consolidation was conducted.The results show that the humic acid in peat soil of Yunnan province has no pores,and there is no pore between humic acid and clay minerals.There are three typical pore structures,and the three typical pores were quantitatively analyzed.During consolidation,the consolidation deformation of peat soil is primarily caused by the internal pore compression of plant residues and pores between plant residues.At the same time,the revelation of the differentiated influence mechanism of load levels on the compression of inter/intra-plant residue pores.The decrease in the proportion of pores between plant residues first increased and then decreased with an increase in load,reaching a peak between 100-200 kPa.The decrease in pores inside the plant residues increased with an increasing load.Additionally,pore compression between the plant residues under different load levels primarily caused the compression deformation of Dali peat during the primary consolidation stage.By contrast,the pore compression inside the plant residues primarily caused the compression deformation during the secondary consolidation stage.
基金Supported by the Ph.D. Programme of Punjab Agricultural University (PAU), Inida
文摘A column study was carried out to assess the influence of accompanying anions on potassium (K) leaching at potato growing sites with different soil textures (sandy loam and clay loam) in northwestern India. Potassium was applied in the top 15 cm layer of soil column at 30 and 60 mg K kg-1 through different sources having different accompanying anions (CI-, SO^-, NO3 and H2PO4-). Maximum K was retained in the top 0-15 cm layer with a sharp decrease in K content occurring in 15 30 cm layer of the soil column. The trend was similar for both levels of applied K as well as frequency of leaching and soil type. The decrease of K content in soil column after four leaching events was maximum in case of Khanaura sandy loam, while only minor decrease was observed in Hundowal clay loam when K was applied at 60 mg K kg-1, indicating higher potential of clay rich soil to adsorb K. In general, the K leaching in presence of the accompanying anions followed the order of SO4^2-≤ H2PO42- 〈 NO3 = Cl-. Highest 1 mol·L^-1 CH3COONH4-extractable K was retained when K was applied along with SO4^2- and H2PO4 anions, and the least was retained when accompanying anion was Cl-. The influence of anions was more pronounced in the light textured soil and at high amounts of K application. Higher levels of K application resulted in higher losses of K, especially in sandy loam soil as observed from the leachate concentration. Among the different K sources, the maximum amount of K leaching was noticed in the soil column amended with KC1. After four leachings, the maximum amount of K leached out was 6.40 mg L-1 in Hundowal clay loam and 9.29 mg L-1 in Khanaura sandy loam at 60 mg K kg-1 of soil application through KC1. These concentrations were lower than the recommended guideline of the World Health Organisation (12.00 mg L-1).
文摘Landuse change from native prairie to managed agriculture can have substantial impacts on soil nutrient properties. Nutrient release from soil organic matter decomposition is the soil’s inherent source of long-term fertility</span><span style="font-family:Verdana;font-size:12px;">;</span><span style="font-family:Verdana;font-size:12px;"> thus it is imperative to understand the effects of continued landuse over </span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;">time to avoid mistaking actual soil property changes with simple inter-annual </span><span><span style="font-size:12px;font-family:Verdana;">variability from one year to the next. The objective of this study was to evaluate the effects of landuse (</span><i><span style="font-size:12px;font-family:Verdana;">i.e.</span></i><span style="font-size:12px;font-family:Verdana;"> managed agriculture and native prairie) in two contrasting physiographic regions (</span><i><span style="font-size:12px;font-family:Verdana;">i.e.</span></i><span style="font-size:12px;font-family:Verdana;"> the Ozark Highlands region of northwest Arkansas and the Grand Prairie region of east-central Arkansas) on the change in extractable soil nutrients over a 15-yr period from 2001 to 2016. Extractable soil Ca, Mg, and Zn increased at least two times more over time (</span><i><span style="font-size:12px;font-family:Verdana;">P</span></i><span style="font-size:12px;font-family:Verdana;"> < 0.05) under cultivated agriculture in the Grand Prairie than under native prairie in the Grand Prairie or either landuse in the Ozark Highlands. </span></span></span><span style="font-family:Verdana;font-size:12px;">Averaged across landuse</span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;">, extractable soil S increased nine times more over time (</span><i><span style="font-size:12px;font-family:Verdana;">P</span></i><span style="font-size:12px;font-family:Verdana;"> < 0.05) in the Ozark Highlands than in the Grand Prairie, while extractable soil Na and Mn increased at least six times more over time (</span><i><span style="font-size:12px;font-family:Verdana;">P</span></i><span style="font-size:12px;font-family:Verdana;"> < 0.05) in the Grand Prairie than in the Ozark Highlands. </span></span><span style="font-family:Verdana;font-size:12px;">Averaged across region,</span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;"> extractable soil Mn increased 2.5 times more over time (</span><i><span style="font-size:12px;font-family:Verdana;">P</span></i><span style="font-size:12px;font-family:Verdana;"> < 0.05) under native prairie than under agricultural landuse. Results from this long-term field study clearly demonstrate how landuse and regional soil characteristics can affect near-surface soil nutrient contents, which should be taken into consideration when implementing conservation and/or ecosystem restoration activities.
文摘In coordination of the construction of concealed work of levee project, the research on the soil quality of Jingnan levee in Hubei province was carried out through test. The results demonstrate: ① the Jingnan levee embankment is in bad quality, the compaction degree of most levee sections doesn’t reach 92%; the average compressive coefficient of the levee backfilled soils is about 0.3 MPa; the seepage coefficients are 10\+ -5 ~10\+ -6 cm/s generally; the levee body was compacted unevenly; ② the soil layers of the levee foundation are distributed complicatedly and generally in low density; the void ratios of various soils are mostly in 0.7~1, indicating that the foundation soils are generally in loose state; ③ the pH value of levee body and foundation is 7.05~8.95, attributing to weak alkaline and not producing significant influence on liquid-plastic limit and shear strength of soils, the content of strongly soluble salt of levee foundation soils is 0.01%~0.52% and will not produce great influence on the mechanical behaviours of soils.
文摘Fallout volcanic deposits of SommaVesuvius(Campania,southern Italy),characterized by the presence of layers with contrasting textural and hydraulic properties,are frequently affected by shallow landslides during rainwater infiltration.The soils of the stratigraphic sequence present intraparticle pores,originated by the gases escaped during magma decompression in the volcanic conduit,thus are characterized by double porosity(i.e.,intraparticle and interparticle pores),which is expected to affect their hydraulic behaviour,and to play a key role in rainwater infiltration through layered deposits.To understand the effect of double porosity on the hydraulic behaviour of the involved soils,controlled experiments have been carried out in an infiltration column.The experimental apparatus is provided with newly designed non-invasive Time Domain Reflectometry(TDR)probes,not buried in the investigated soil layers so as to minimize disturbance to the flow,allowing water content measurement during vertical flow processes.Specifically,transient flow experiments are carried out through reconstituted specimens of black scoriae and grey pumices,both loose pyroclastic granular soils from fallout deposits of Somma-Vesuvius,featuring double porosity with different pore size distributions,that were estimated by X-ray tomography and Mercury Intrusion Porosimetry.The experimental results highlight the effects of the double porosity and clearly indicate the different behaviour of the two soils during wetting and drying processes,mainly related to the different dimensions of intraparticle pores.
基金Project supported by the National Natural Science Foundation of China (No. 10872124)
文摘Based on elasticity and the theory of saturated porous media, and regarding the pile and the soil as a single phase elastic and a saturated viscoelastic media, respectively, the dynamical behavior of vertical vibration of an end-bearing pile in a saturated viscoelastic soil layer is investigated in the frequency domain using the Helmholtz decomposition and variable separation method. The axisymmetrical analytical solutions for vertical vibrations of the pile in a saturated viscoelastic soil layer are obtained, and the analytical expression of the dynamical complex stiffness of the pile top is presented. Responses of dynamic stiffness factor and equivalent damping of pile top with respect to the frequency are shown in figures using a numerical method. Effects of the saturated soil parameters, modulus ratio of the pile to soil, slenderness ratio of pile and pile's Poisson ratio, etc. on the stiffness factor and damping are examined. It is shown that, due to the effect of the transversal deformation of the pile and the radial force of the saturated viscoelastic soil acting on the pile, the dynamic stiffness factor and the damping derived from the axisymmetrical solution are greatly different from those derived from the classical Euler-Bernoulli rod model, especially at some specific excitation frequencies. Therefore, there are limitations on applicability of the Euler-Bernoulli rod model in analyzing verticai vibration of the pile. More accurate analysis should be based on a three-dimensional model.
基金supported by the National Natural Science Foundation of China(No.42177010)the Youth innovation of Chinese Academy of Agricultural Sciences(No.Y2023QC17)。
文摘Soil acidifications become one of the main causes restricting the sustainable development of agriculture and causing issues of agricultural product safety.In order to explore the effect of different acidification on soil cadmium(Cd)availability,soil pot culture and hydroponic(soil potting solution extraction)were applied,and non-invasive micro-test technique(NMT)was combined.Here three different soil acidification processes were simulated,including direct acidification by adding sulfuric acid(AP1),acid rain acidification(AP2)by adding artificial simulated acid rain and excessive fertilization acidification by adding(NH_(4))_(2)SO_(4)(AP3).The results showed that for direct acidification(AP1),DTPA-Cd concentration in field soils in Liaoning(S1)and Zhejiang(S2)increased by 0.167-0.217 mg/kg and 0.181-0.346 mg/kg,respectively,compared with control group.When soil pH decreased by 0.45 units in S1,the Cd content of rice stems,leaves and roots increased by 0.48 to 6.04 mg/kg and 2.58 to 12.84mg/kg,respectively,When the pH value of soil S1 and S2 decreased by 0.20 units,the average velocity of Cd^(2+)at 200μm increased by 10.03-33.11 pmol/cm~2/sec and 21.33-52.86pmol/cm^(2)/sec,respectively,and followed the order of AP3>AP2>AP1.In summary,different acidification measures would improve the effectiveness of Cd,under the same pH reduction condition,fertilization acidification increased Cd availability most significantly.
文摘Regressive models were obtained by employing '311 B' and '3414' optimal regressive desingns through 5 year (1993~1997) field experiment,and by datum processing with computer.These models express the relationships between corn yields in high,middle and low yield areas and N,P,and K application rates in black soil.By analysis to the models,the fertilizer application rates for maximum yield and optimal yield were achieved.
基金The financial supports of the National Innovation Office (TECH_09-A4-2009-0129, SOILUTIL project, the New Hungary Development Plan (TáMOP-4.2.1/B-09/1/KMR-2010-0002 BME R + D + I project)the Hungarian State and the European Union and co-financed by the European Social Fund (TáMOP 4.2.4.A-1)
文摘Red mud, the by-product of aluminum production, has been regarded as a problematic residue all over the world. Its storage involves risks as evidenced by the Ajka red mud spill,an accident in Hungary where the slurry broke free, flooding the surrounding areas. As an immediate remediation measure more than 5 cm thick red mud layer was removed from the flooded soil surface. The removed red mud and soil mixture(RMSM) was transferred into the reservoirs for storage. In this paper the application of RMSM is evaluated in a field study aiming at re-utilizing waste, decreasing cost of waste disposal and providing a value-added product. The purpose was to investigate the applicability of RMSM as surface layer component of landfill cover systems. The field study was carried out in two steps: in lysimeters and in field plots. The RMSM was mixed at ratios ranging between 0 and 50% w/w with low quality subsoil(LQS) originally used as surface layer of an interim landfill cover. The characteristics of the LQS + RMSM mixtures compared to the subsoil(LQS) and the RMSM were determined by physical–chemical, biological and ecotoxicological methods. The addition of RMSM to the subsoil(LQS) at up to 20% did not result any ecotoxic effect, but it increased the water holding capacity. In addition, the microbial substrate utilization became about triple of subsoil(LQS) after 10 months. According to our results the RMSM mixed into subsoil(LQS) at20% w/w dose may be applied as surface layer of landfill cover systems.
文摘Small H-beams such as the No.14-20 I-steel can be inserted into soil-cement retaining walls to form small H-beam soil-cement compound walls, functioning both as a retaining wall and a cutoff wall for braced structure excavations. Being different from the mixed soil-cement wall (SMW), the interaction between soil-cement and small H-steel is very good. We have carried out a series of bending experiments on small H-beams in soil-cement model compound beams to study the mechanism of interactions. The results show that the interaction between H-beams and soil-cement is very good, whether the H-beam is single or double. Joint forms of double H-beams at one end have little effect on both the contribution coefficient and on ultimate deflection before cracking. But after cracking, the joint forms greatly affect the contribution coefficient. We conclude that the rigid joint girder for double H-beams is a better choice in oractice.
文摘The first area is rock instability in conglomerates walls, and the second area is soil instability in a slope composed of sand gravel and shale in the south of the study area. In the first area, rock slopes were studied by fractures condition, slope morphology, measured engineering features of rocks, and then interpreted by Dips software to define the fracture types for analysis of block toppling. The rock slope of the area was modeled by Rock plan by adding water penetration and earthquake. The results showed that in dry condition these slopes were stable, but by penetrating water and saturation of the open spaces of the fractures, the block toppling will occur. Also, seismic activities in the area caused the instability of the slopes, and landslide will happen. In the second area, landslides were spoon-shaped type. To investigate the soil slope stability, the condition of slope was modeled by using soil engineering properties and measuring the morphological condition of the slope such as slope dip, layers thickness, layers dip and slope elevation. It was shown instability of the soil slopes. To stabilize the sliding areas, the dip changing method and formation of stepped-style slope were done. However, the new condition changed the formation of sliding areas in the upper most part of the stairs. The retaining walls formed from the local materials were applied to the slope to provide the desire stability.
文摘The Soil Conservation Monitorins Information System (SCMIS) presented in this paper is oriented to soil erosion control, resources exploitation, utilization, planning and management for a small watershed (about 10 sq. km.) on the Loess Plateau. It sums up Remote sensing (RS), Geographical Information System (GIS) and Expert System (ES) and consists of a integrated system. As a basic level information system of Loess Plateau, its perfection and psreading will bring about a great advance in resources exploitation and management of Loess Plateau.