Advances in recent years in the understanding of, and the genetic diagnosis of hereditary hemochromatosis (HH) have changed the approach to iron overload he-reditary diseases. The ability to use a radiologic tool (MRI...Advances in recent years in the understanding of, and the genetic diagnosis of hereditary hemochromatosis (HH) have changed the approach to iron overload he-reditary diseases. The ability to use a radiologic tool (MRI) that accurately provides liver iron concentration determination, and the presence of non-invasive sero-logic markers for fibrosis prediction (ser um ferritin, platelet count, transaminases, etc), have diminished the need for liver biopsy for diagnosis and prognosis of this disease. Consequently, the role of liv er biopsy in iron metabolism disorders is changing. Furthermore, the irruption of transient elastography to assess liver stiffness, and, more recently, the ability to determine liver f ibrosis by means of MRI elastography will change this role even more, with a potential drastic decline in hepatic biopsies in years to come. This review will provide a brief summary of the different non-invasive methods available nowadays for diagnosis and prognosis in HH, and point out potential new techniques that could come about in the next years for fibrosis prediction, thus avoiding the need for liver biopsy in a greater number of patients. It is possible that liver biopsy will remain useful for the diagnosis of associated diseases, where other non-invasive means are not po-ssible, or for those rare cases displaying discrepancies between radiological and biochemical markers.展开更多
The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is increasing,affecting over one-third of the global population and contributing to significant morbidity and mortality.Diagnosing MAFLD,esp...The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is increasing,affecting over one-third of the global population and contributing to significant morbidity and mortality.Diagnosing MAFLD,especially with advan-ced fibrosis,remains challenging due to the limitations of liver biopsy,the current gold standard.Non-invasive tests are crucial for early detection and management.Among these,the fibrosis-4 index(Fib-4)is widely recommended as a first-line test for screening for liver fibrosis.Advanced imaging techniques,including ultrasound-based elastography and magnetic resonance elastography,offer high accuracy but are limited by cost and availability.Combining biomarkers,such as in the enhanced liver fibrosis score and FibroScan-AST score,enhances diagnostic precision and is recommended to further stratify patients who are considered to be intermediate or high risk from the Fib-4 score.We believe that the future lies in the combined use of biomarkers to improve diagnostic accuracy.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardwa...A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardware and software of this apparatus were designed,and detecting algorithms based on conservation of energy method (COEM) were presented. According to the law of conservation of energy that the energy derived by human body equals energy consumed by metabolism,and the relationship between convection,evaporation,radiation and the BGL was established. The sensor module was designed. 20 healthy volunteers were involved in the clinical experiment. The BGL measured by an automatic biochemical analyzer (ABA) was set as the reference. Regression analysis was performed to compare the conservation of energy method with the biochemical method,using the 20 data points with blood glucose concentrations ranging from 680 to 1 100 mg/L. Reproducibility was measured for healthy fasting volunteers. The results show that the means of BGL detected by NBGMA and ANA are very close to each other,and the difference of standard deviation (SD) is 24.7 mg/L. The correlative coefficient is 0.807. The coefficient of variation (CV) is 4% at 921.6 mg/L. The resultant regression is evaluated by the Clarke error grid analysis (EGA) and all data points are included in the clinically acceptable regions (region A:100%,region B:0%). Accordingly,it is feasible to measure BGL with COEM.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
BACKGROUND Despite the developments in the field of kidney transplantation,the already existing diagnostic techniques for patient monitoring are considered insufficient.Protein biomarkers that can be derived from mode...BACKGROUND Despite the developments in the field of kidney transplantation,the already existing diagnostic techniques for patient monitoring are considered insufficient.Protein biomarkers that can be derived from modern approaches of proteomic analysis of liquid biopsies(serum,urine)represent a promising innovation in the monitoring of kidney transplant recipients.AIM To investigate the diagnostic utility of protein biomarkers derived from proteomics approaches in renal allograft assessment.METHODS A systematic review was conducted in accordance with PRISMA guidelines,based on research results from the PubMed and Scopus databases.The primary focus was on evaluating the role of biomarkers in the non-invasive diagnosis of transplant-related com-plications.Eligibility criteria included protein biomarkers and urine and blood samples,while exclusion criteria were language other than English and the use of low resolution and sensitivity methods.The selected research articles,were categorized based on the biological sample,condition and methodology and the significantly and reproducibly differentiated proteins were manually selected and extracted.Functional and network analysis of the selected proteins was performed.RESULTS In 17 included studies,58 proteins were studied,with the cytokine CXCL10 being the most investigated.Biological pathways related to immune response and fibrosis have shown to be enriched.Applications of biomarkers for the assessment of renal damage as well as the prediction of short-term and long-term function of the graft were reported.Overall,all studies have shown satisfactory diagnostic accuracy of proteins alone or in combination with conventional methods,as far as renal graft assessment is concerned.CONCLUSION Our review suggests that protein biomarkers,evaluated in specific biological fluids,can make a significant contribution to the timely,valid and non-invasive assessment of kidney graft.展开更多
In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error...In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.展开更多
Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.Howev...Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.展开更多
Gastric cancer(GC),a multifaceted and highly aggressive malignancy,represents challenging healthcare burdens globally,with a high incidence and mortality rate.Although endoscopy,combined with histological examination,...Gastric cancer(GC),a multifaceted and highly aggressive malignancy,represents challenging healthcare burdens globally,with a high incidence and mortality rate.Although endoscopy,combined with histological examination,is the gold stan-dard for GC diagnosis,its high cost,invasiveness,and specialized requirements hinder widespread use for screening.With the emergence of innovative techno-logies such as advanced imaging,liquid biopsy,and breath tests,the landscape of GC diagnosis is poised for radical transformation,becoming more accessible,less invasive,and more efficient.As the non-invasive diagnostic techniques continue to advance and undergo rigorous clinical validation,they hold the promise of sig-nificantly impacting patient outcomes,ultimately leading to better treatment results and improved quality of life for patients with GC.展开更多
Chronic kidney disease(CKD)is a degenerative disorder that affects millions of people throughout the world,causing considerable morbidity and healthcare burden.Frequent blood sampling is the current gold standard for ...Chronic kidney disease(CKD)is a degenerative disorder that affects millions of people throughout the world,causing considerable morbidity and healthcare burden.Frequent blood sampling is the current gold standard for monitoring CKD to evaluate biochemical and mineral indicators.However,there are draw-backs to frequent blood draws,such as pain for patients,the possibility of infe-ction,and higher medical expenses.Saliva-based diagnostics offer advantages such as ease of collection,reduced invasiveness,and improved patient compli-ance.A comprehensive literature review was conducted to analyze studies eva-luating the diagnostic utility of salivary creatinine,urea,calcium,and parathyroid hormone(PTH)in patients with CKD.Various saliva collection methods,inc-luding stimulated and unstimulated approaches,were investigated for efficiency and reliability,and a correlation was shown between serum and salivary crea-tinine,urea,PTH,and calcium levels,indicating their potential as CKD biomar-kers.Despite these promising findings,challenges such as standardization of collection methods,variability in salivary flow rates,and predictive value in association with blood parameters are addressed to ensure clinical applicability.This review explores the potential and challenges of saliva as a non-invasive alternative for CKD diagnostics.展开更多
Flip-flow screens offer unique advantages in grading fine-grained materials.To address inaccuracies caused by sensor vibra-tions in traditional contact measurement methods,we constructed a non-invasive measurement sys...Flip-flow screens offer unique advantages in grading fine-grained materials.To address inaccuracies caused by sensor vibra-tions in traditional contact measurement methods,we constructed a non-invasive measurement system based on electrical and optical sig-nals.A trajectory tracking algorithm for the screen-body was developed to visually measure the kinematics.Employing the principle oflaser reflection for distance measurement,optical techniques were performed to capture the kinematic information of the screen-plate.Ad-ditionally,by using Wi-Fi and Bluetooth transmission of electrical signals,tracer particle tracking technology was implemented to elec-trically measure the kinematic information of mineral particles.Consequently,intelligent fusion and perception of the kinematic informa-tion for the screen-body,screen-plate,and particles in the screening system have been achieved.展开更多
RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa...RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.展开更多
Hyaline Membrane Disease(HMD)in newborns,also known as neonatal respiratory distress syndrome,is a common critical illness in premature infants,with an incidence inversely correlated with gestational age,posing a seri...Hyaline Membrane Disease(HMD)in newborns,also known as neonatal respiratory distress syndrome,is a common critical illness in premature infants,with an incidence inversely correlated with gestational age,posing a serious threat to the life and health of newborns.This paper systematically reviews the core pathogenesis of HMD,focusing on the abnormal metabolism of pulmonary surfactant(PS),genetic factors,immature lung development,and the synergistic effects of inflammatory oxidative stress.It highlights the advances in non-invasive ventilation(NIV)therapy for HMD,including the mechanisms of action,clinical application effects,and optimization strategies of mainstream modalities such as nasal continuous positive airway pressure ventilation(NCPAP),nasal intermittent positive pressure ventilation(NIPPV),and heated humidified high-flow nasal cannula ventilation(HHHFNC).The aim is to provide references for standardized clinical treatment.展开更多
Metabolic dysfunction-associated steatotic liver disease(MASLD)requires accurate liver fibrosis assessment for management.While liver biopsy remains the gold standard,its invasiveness drives demand for non-invasive bi...Metabolic dysfunction-associated steatotic liver disease(MASLD)requires accurate liver fibrosis assessment for management.While liver biopsy remains the gold standard,its invasiveness drives demand for non-invasive biomarkers.This review evaluates blood biomarkers for MASLD fibrosis staging.Established scores(fibrosis-4,non-alcoholic fatty liver disease fibrosis score)offer accessible screening but exhibit variable performance influenced by age,obesity,and comorbidities.Patented panels(e.g.,enhanced liver fibrosis test,FibroMeter)improve accuracy by integrating extracellular matrix or metabolic markers,though context-specific thresholds are essential.Emerging biomarkers like propeptide of type 3 collagen,Mac-2 binding protein glycosylation isomer,epigenetic markers(proliferator-activated receptor-γmethylation),and angiopoietin-like proteins a family of eight glycoproteins show promise but require large-scale validation.Genetic risk scores and multi-omics approaches face generalizability challenges.Integration strategies,such as combining serum biomarkers with liver stiffness measurement via Agile scores,enhance diagnostic precision and reduce indeterminate classifications.Current tools aid risk stratification,but no single biomarker replicates biopsy-level precision.Future efforts must prioritize MASLD-specific diagnostic frameworks,standardized protocols,and multi-modal integration to enhance clinical utility and address MASLD’s growing burden.展开更多
Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for ...Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for efficiently predicting the frequency distribution of wind speeds at a site. Hourly wind speed and direction data were collected from the National Aeronautics and Space Administration (NASA) website for the period 2013 to 2023. MATLAB software was used to calculate the distribution parameters using the graphical method and to plot the corresponding curves, while WRPLOTView software was used to construct the wind rose. The average wind speed obtained is 3.33 m/s and can reach up to 5.71 m/s at a height of 100 meters. The wind energy is estimated to be 1315.30 kWh/m2 at a height of 100 meters. The wind rose indicates the prevailing winds (ranging from 3.60 m/s to 5.70 m/s) in the northeast-east direction.展开更多
BACKGROUND Internet gaming disorder(IGD)is a growing concern among adolescents and adults,necessitating effective treatment strategies beyond pharmacological interventions.AIM To evaluated the effectiveness of non-inv...BACKGROUND Internet gaming disorder(IGD)is a growing concern among adolescents and adults,necessitating effective treatment strategies beyond pharmacological interventions.AIM To evaluated the effectiveness of non-invasive interventions for treating IGD among adolescents and adults.METHODS A total of 11 randomized controlled trials published between 2020 and 2025 were included in this meta-analysis,encompassing 1208 participants from diverse geographic and cultural contexts.The interventions examined included cognitive behavioral therapy(CBT),internet-based CBT,neurofeedback,virtual reality therapy,abstinence-based programs,and school-based prevention.The primary outcomes assessed were reductions in gaming time and IGD severity.Secondary outcomes included improvements in mood,anxiety,and psychosocial functioning(e.g.,stronger peer relationships,better academic or work performance,and healthier daily-life role fulfillment).RESULTS The pooled standardized mean difference for IGD symptom reduction significantly favored non-invasive interventions(Hedges’g=0.56,95%CI:0.38-0.74,P<0.001),with moderate heterogeneity observed(I2=47%).Subgroup analyses indicated that CBT-based programs,both in-person and online,yielded the strongest effects,particularly when caregiver involvement or self-monitoring was incorporated.Funnel plot asymmetry was minimal,suggesting a low risk of publication bias.CONCLUSION These findings support the efficacy of scalable,low-risk non-invasive interventions as first-line treatment options for IGD,particularly in youth populations.Future studies should prioritize investigating long-term outcomes,comparing the effectiveness of different non-invasive modalities,and developing culturally adaptive delivery methods.展开更多
In this article,we comment on the article by Peta et al.This study evaluates the diagnostic performance of FibroTest-Actitest,transient elastography,and the fibrosis-4 index against a histological reference.Using the ...In this article,we comment on the article by Peta et al.This study evaluates the diagnostic performance of FibroTest-Actitest,transient elastography,and the fibrosis-4 index against a histological reference.Using the Obuchowski measure,the authors demonstrate that FibroTest and vibration-controlled transient elastography outperform the fibrosis-4 index in detecting fibrosis.Additionally,Actitest offers superior estimation of inflammatory activity compared to conventional biomarkers.Assessing liver fibrosis is crucial for managing autoimmune hepatitis(AIH),yet reliance on invasive liver biopsy remains higher than in other liver diseases.This is partly due to more complex diagnostic criteria for AIH,the lack of standardized scoring for non-invasive testing,and the presence of inflammation,which can lead to falsely elevated results with non-invasive tests.A Bayesian latent class model further supports the reliability of these non-invasive tests,highlighting their potential to complement biopsy,particularly for longterm disease monitoring.These findings underscore the importance of noninvasive diagnostics in optimizing AIH management.展开更多
Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to...Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to the compressive strength of the core sample with a diameter of 100mm and a height-to-diameter ratio of 1:1.By comparing the measured strength values,the relationship between the measured values under different strength measurement methods was analyzed.Design/methodology/approach–A comparative test of the core drilling method and the rebound method was conducted on the side walls of tunnel linings in some under-construction railways to study the feasibility of the rebound method in engineering quality supervision and inspection.Findings–Tests showed that the rebound strength was positively correlated with the core drill strength.The core drill test strength was significantly higher than the rebound test strength,and the strength still increased after 56 days of age.The rebound method is suitable for the general survey of concrete strength during the construction process and is not suitable for direct supervision and inspection.Originality/value–By studying the correlation of test strength of tunnel lining concrete using two methods,the differences in test results of different methods are proposed to provide a reference for the test and evaluation of tunnel lining strength in railway engineering.展开更多
As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and s...As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and smart maintenance.While promising,both methods have issues that need to be addressed.For example,model-based methods are limited by low computational accuracy and a high computational burden,and data-driven methods always suffer from poor interpretability and redundant features.To address these issues,the concept of data-model fusion(DMF)emerges as a promising solution.DMF involves integrating model-based methods with data-driven methods by incorporating big data into model-based methods or embedding relevant domain knowledge into data-driven methods.Despite growing efforts in the field of DMF,a unanimous definition of DMF remains elusive,and a general framework of DMF has been rarely discussed.This paper aims to address this gap by providing a thorough overview and categorization of both data-driven methods and model-based methods.Subsequently,this paper also presents the definition and categorization of DMF and discusses the general framework of DMF.Moreover,the primary seven applications of DMF are reviewed within the context of smart manufacturing and digital engineering.Finally,this paper directs the future directions of DMF.展开更多
文摘Advances in recent years in the understanding of, and the genetic diagnosis of hereditary hemochromatosis (HH) have changed the approach to iron overload he-reditary diseases. The ability to use a radiologic tool (MRI) that accurately provides liver iron concentration determination, and the presence of non-invasive sero-logic markers for fibrosis prediction (ser um ferritin, platelet count, transaminases, etc), have diminished the need for liver biopsy for diagnosis and prognosis of this disease. Consequently, the role of liv er biopsy in iron metabolism disorders is changing. Furthermore, the irruption of transient elastography to assess liver stiffness, and, more recently, the ability to determine liver f ibrosis by means of MRI elastography will change this role even more, with a potential drastic decline in hepatic biopsies in years to come. This review will provide a brief summary of the different non-invasive methods available nowadays for diagnosis and prognosis in HH, and point out potential new techniques that could come about in the next years for fibrosis prediction, thus avoiding the need for liver biopsy in a greater number of patients. It is possible that liver biopsy will remain useful for the diagnosis of associated diseases, where other non-invasive means are not po-ssible, or for those rare cases displaying discrepancies between radiological and biochemical markers.
文摘The prevalence of metabolic dysfunction-associated fatty liver disease(MAFLD)is increasing,affecting over one-third of the global population and contributing to significant morbidity and mortality.Diagnosing MAFLD,especially with advan-ced fibrosis,remains challenging due to the limitations of liver biopsy,the current gold standard.Non-invasive tests are crucial for early detection and management.Among these,the fibrosis-4 index(Fib-4)is widely recommended as a first-line test for screening for liver fibrosis.Advanced imaging techniques,including ultrasound-based elastography and magnetic resonance elastography,offer high accuracy but are limited by cost and availability.Combining biomarkers,such as in the enhanced liver fibrosis score and FibroScan-AST score,enhances diagnostic precision and is recommended to further stratify patients who are considered to be intermediate or high risk from the Fib-4 score.We believe that the future lies in the combined use of biomarkers to improve diagnostic accuracy.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金Project(07JJ6133) supported by the Natural Science Foundation of Hunan Province, China
文摘A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardware and software of this apparatus were designed,and detecting algorithms based on conservation of energy method (COEM) were presented. According to the law of conservation of energy that the energy derived by human body equals energy consumed by metabolism,and the relationship between convection,evaporation,radiation and the BGL was established. The sensor module was designed. 20 healthy volunteers were involved in the clinical experiment. The BGL measured by an automatic biochemical analyzer (ABA) was set as the reference. Regression analysis was performed to compare the conservation of energy method with the biochemical method,using the 20 data points with blood glucose concentrations ranging from 680 to 1 100 mg/L. Reproducibility was measured for healthy fasting volunteers. The results show that the means of BGL detected by NBGMA and ANA are very close to each other,and the difference of standard deviation (SD) is 24.7 mg/L. The correlative coefficient is 0.807. The coefficient of variation (CV) is 4% at 921.6 mg/L. The resultant regression is evaluated by the Clarke error grid analysis (EGA) and all data points are included in the clinically acceptable regions (region A:100%,region B:0%). Accordingly,it is feasible to measure BGL with COEM.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
文摘BACKGROUND Despite the developments in the field of kidney transplantation,the already existing diagnostic techniques for patient monitoring are considered insufficient.Protein biomarkers that can be derived from modern approaches of proteomic analysis of liquid biopsies(serum,urine)represent a promising innovation in the monitoring of kidney transplant recipients.AIM To investigate the diagnostic utility of protein biomarkers derived from proteomics approaches in renal allograft assessment.METHODS A systematic review was conducted in accordance with PRISMA guidelines,based on research results from the PubMed and Scopus databases.The primary focus was on evaluating the role of biomarkers in the non-invasive diagnosis of transplant-related com-plications.Eligibility criteria included protein biomarkers and urine and blood samples,while exclusion criteria were language other than English and the use of low resolution and sensitivity methods.The selected research articles,were categorized based on the biological sample,condition and methodology and the significantly and reproducibly differentiated proteins were manually selected and extracted.Functional and network analysis of the selected proteins was performed.RESULTS In 17 included studies,58 proteins were studied,with the cytokine CXCL10 being the most investigated.Biological pathways related to immune response and fibrosis have shown to be enriched.Applications of biomarkers for the assessment of renal damage as well as the prediction of short-term and long-term function of the graft were reported.Overall,all studies have shown satisfactory diagnostic accuracy of proteins alone or in combination with conventional methods,as far as renal graft assessment is concerned.CONCLUSION Our review suggests that protein biomarkers,evaluated in specific biological fluids,can make a significant contribution to the timely,valid and non-invasive assessment of kidney graft.
文摘In order to solve the problem of the variable coefficient ordinary differen-tial equation on the bounded domain,the Lagrange interpolation method is used to approximate the exact solution of the equation,and the error between the numerical solution and the exact solution is obtained,and then compared with the error formed by the difference method,it is concluded that the Lagrange interpolation method is more effective in solving the variable coefficient ordinary differential equation.
基金Supported by the National Natural Science Foundation of China(Nos.52222904 and 52309117)China Postdoctoral Science Foundation(Nos.2022TQ0168 and 2023M731895).
文摘Ocean energy has progressively gained considerable interest due to its sufficient potential to meet the world’s energy demand,and the blade is the core component in electricity generation from the ocean current.However,the widened hydraulic excitation frequency may satisfy the blade resonance due to the time variation in the velocity and angle of attack of the ocean current,even resulting in blade fatigue and destructively interfering with grid stability.A key parameter that determines the resonance amplitude of the blade is the hydrodynamic damping ratio(HDR).However,HDR is difficult to obtain due to the complex fluid-structure interaction(FSI).Therefore,a literature review was conducted on the hydrodynamic damping characteristics of blade-like structures.The experimental and simulation methods used to identify and obtain the HDR quantitatively were described,placing emphasis on the experimental processes and simulation setups.Moreover,the accuracy and efficiency of different simulation methods were compared,and the modal work approach was recommended.The effects of key typical parameters,including flow velocity,angle of attack,gap,rotational speed,and cavitation,on the HDR were then summarized,and the suggestions on operating conditions were presented from the perspective of increasing the HDR.Subsequently,considering multiple flow parameters,several theoretical derivations and semi-empirical prediction formulas for HDR were introduced,and the accuracy and application were discussed.Based on the shortcomings of the existing research,the direction of future research was finally determined.The current work offers a clear understanding of the HDR of blade-like structures,which could improve the evaluation accuracy of flow-induced vibration in the design stage.
基金Supported by National Natural Science Foundation of China,No.82300451Research Foundation of Wuhan Union Hospital,No.2022xhyn050.
文摘Gastric cancer(GC),a multifaceted and highly aggressive malignancy,represents challenging healthcare burdens globally,with a high incidence and mortality rate.Although endoscopy,combined with histological examination,is the gold stan-dard for GC diagnosis,its high cost,invasiveness,and specialized requirements hinder widespread use for screening.With the emergence of innovative techno-logies such as advanced imaging,liquid biopsy,and breath tests,the landscape of GC diagnosis is poised for radical transformation,becoming more accessible,less invasive,and more efficient.As the non-invasive diagnostic techniques continue to advance and undergo rigorous clinical validation,they hold the promise of sig-nificantly impacting patient outcomes,ultimately leading to better treatment results and improved quality of life for patients with GC.
文摘Chronic kidney disease(CKD)is a degenerative disorder that affects millions of people throughout the world,causing considerable morbidity and healthcare burden.Frequent blood sampling is the current gold standard for monitoring CKD to evaluate biochemical and mineral indicators.However,there are draw-backs to frequent blood draws,such as pain for patients,the possibility of infe-ction,and higher medical expenses.Saliva-based diagnostics offer advantages such as ease of collection,reduced invasiveness,and improved patient compli-ance.A comprehensive literature review was conducted to analyze studies eva-luating the diagnostic utility of salivary creatinine,urea,calcium,and parathyroid hormone(PTH)in patients with CKD.Various saliva collection methods,inc-luding stimulated and unstimulated approaches,were investigated for efficiency and reliability,and a correlation was shown between serum and salivary crea-tinine,urea,PTH,and calcium levels,indicating their potential as CKD biomar-kers.Despite these promising findings,challenges such as standardization of collection methods,variability in salivary flow rates,and predictive value in association with blood parameters are addressed to ensure clinical applicability.This review explores the potential and challenges of saliva as a non-invasive alternative for CKD diagnostics.
基金financially supported by ChinaNational Funds for Distinguished Young Scientists(No.52125403)National Natural Science Foundation of China(Nos.52261135540 and 52404303)Science and Tech-nology Plan Special Fund Project of Jiangsu Province,China(No.BZ2024046)。
文摘Flip-flow screens offer unique advantages in grading fine-grained materials.To address inaccuracies caused by sensor vibra-tions in traditional contact measurement methods,we constructed a non-invasive measurement system based on electrical and optical sig-nals.A trajectory tracking algorithm for the screen-body was developed to visually measure the kinematics.Employing the principle oflaser reflection for distance measurement,optical techniques were performed to capture the kinematic information of the screen-plate.Ad-ditionally,by using Wi-Fi and Bluetooth transmission of electrical signals,tracer particle tracking technology was implemented to elec-trically measure the kinematic information of mineral particles.Consequently,intelligent fusion and perception of the kinematic informa-tion for the screen-body,screen-plate,and particles in the screening system have been achieved.
基金supported by grants from the National Science Foundation of China(Grant Nos.12375038 and 12075171 to ZJT,and 12205223 to YLT).
文摘RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.
文摘Hyaline Membrane Disease(HMD)in newborns,also known as neonatal respiratory distress syndrome,is a common critical illness in premature infants,with an incidence inversely correlated with gestational age,posing a serious threat to the life and health of newborns.This paper systematically reviews the core pathogenesis of HMD,focusing on the abnormal metabolism of pulmonary surfactant(PS),genetic factors,immature lung development,and the synergistic effects of inflammatory oxidative stress.It highlights the advances in non-invasive ventilation(NIV)therapy for HMD,including the mechanisms of action,clinical application effects,and optimization strategies of mainstream modalities such as nasal continuous positive airway pressure ventilation(NCPAP),nasal intermittent positive pressure ventilation(NIPPV),and heated humidified high-flow nasal cannula ventilation(HHHFNC).The aim is to provide references for standardized clinical treatment.
基金Supported by the National Natural Science Foundation of China,No.82402719Sichuan Science and Technology Program,No.2025ZNSFSC1553.
文摘Metabolic dysfunction-associated steatotic liver disease(MASLD)requires accurate liver fibrosis assessment for management.While liver biopsy remains the gold standard,its invasiveness drives demand for non-invasive biomarkers.This review evaluates blood biomarkers for MASLD fibrosis staging.Established scores(fibrosis-4,non-alcoholic fatty liver disease fibrosis score)offer accessible screening but exhibit variable performance influenced by age,obesity,and comorbidities.Patented panels(e.g.,enhanced liver fibrosis test,FibroMeter)improve accuracy by integrating extracellular matrix or metabolic markers,though context-specific thresholds are essential.Emerging biomarkers like propeptide of type 3 collagen,Mac-2 binding protein glycosylation isomer,epigenetic markers(proliferator-activated receptor-γmethylation),and angiopoietin-like proteins a family of eight glycoproteins show promise but require large-scale validation.Genetic risk scores and multi-omics approaches face generalizability challenges.Integration strategies,such as combining serum biomarkers with liver stiffness measurement via Agile scores,enhance diagnostic precision and reduce indeterminate classifications.Current tools aid risk stratification,but no single biomarker replicates biopsy-level precision.Future efforts must prioritize MASLD-specific diagnostic frameworks,standardized protocols,and multi-modal integration to enhance clinical utility and address MASLD’s growing burden.
文摘Understanding the wind power potential of a site is essential for designing an optimal wind power conditioning system. The Weibull distribution and wind speed extrapolation methods are powerful mathematical tools for efficiently predicting the frequency distribution of wind speeds at a site. Hourly wind speed and direction data were collected from the National Aeronautics and Space Administration (NASA) website for the period 2013 to 2023. MATLAB software was used to calculate the distribution parameters using the graphical method and to plot the corresponding curves, while WRPLOTView software was used to construct the wind rose. The average wind speed obtained is 3.33 m/s and can reach up to 5.71 m/s at a height of 100 meters. The wind energy is estimated to be 1315.30 kWh/m2 at a height of 100 meters. The wind rose indicates the prevailing winds (ranging from 3.60 m/s to 5.70 m/s) in the northeast-east direction.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)Funded by the Ministry of Education,No.NRF-RS-2023-00237287.
文摘BACKGROUND Internet gaming disorder(IGD)is a growing concern among adolescents and adults,necessitating effective treatment strategies beyond pharmacological interventions.AIM To evaluated the effectiveness of non-invasive interventions for treating IGD among adolescents and adults.METHODS A total of 11 randomized controlled trials published between 2020 and 2025 were included in this meta-analysis,encompassing 1208 participants from diverse geographic and cultural contexts.The interventions examined included cognitive behavioral therapy(CBT),internet-based CBT,neurofeedback,virtual reality therapy,abstinence-based programs,and school-based prevention.The primary outcomes assessed were reductions in gaming time and IGD severity.Secondary outcomes included improvements in mood,anxiety,and psychosocial functioning(e.g.,stronger peer relationships,better academic or work performance,and healthier daily-life role fulfillment).RESULTS The pooled standardized mean difference for IGD symptom reduction significantly favored non-invasive interventions(Hedges’g=0.56,95%CI:0.38-0.74,P<0.001),with moderate heterogeneity observed(I2=47%).Subgroup analyses indicated that CBT-based programs,both in-person and online,yielded the strongest effects,particularly when caregiver involvement or self-monitoring was incorporated.Funnel plot asymmetry was minimal,suggesting a low risk of publication bias.CONCLUSION These findings support the efficacy of scalable,low-risk non-invasive interventions as first-line treatment options for IGD,particularly in youth populations.Future studies should prioritize investigating long-term outcomes,comparing the effectiveness of different non-invasive modalities,and developing culturally adaptive delivery methods.
文摘In this article,we comment on the article by Peta et al.This study evaluates the diagnostic performance of FibroTest-Actitest,transient elastography,and the fibrosis-4 index against a histological reference.Using the Obuchowski measure,the authors demonstrate that FibroTest and vibration-controlled transient elastography outperform the fibrosis-4 index in detecting fibrosis.Additionally,Actitest offers superior estimation of inflammatory activity compared to conventional biomarkers.Assessing liver fibrosis is crucial for managing autoimmune hepatitis(AIH),yet reliance on invasive liver biopsy remains higher than in other liver diseases.This is partly due to more complex diagnostic criteria for AIH,the lack of standardized scoring for non-invasive testing,and the presence of inflammation,which can lead to falsely elevated results with non-invasive tests.A Bayesian latent class model further supports the reliability of these non-invasive tests,highlighting their potential to complement biopsy,particularly for longterm disease monitoring.These findings underscore the importance of noninvasive diagnostics in optimizing AIH management.
文摘Purpose–For the commonly used concrete mix for railway tunnel linings,concrete model specimens were made,and springback and core drilling tests were conducted at different ages.The springback strength was measured to the compressive strength of the core sample with a diameter of 100mm and a height-to-diameter ratio of 1:1.By comparing the measured strength values,the relationship between the measured values under different strength measurement methods was analyzed.Design/methodology/approach–A comparative test of the core drilling method and the rebound method was conducted on the side walls of tunnel linings in some under-construction railways to study the feasibility of the rebound method in engineering quality supervision and inspection.Findings–Tests showed that the rebound strength was positively correlated with the core drill strength.The core drill test strength was significantly higher than the rebound test strength,and the strength still increased after 56 days of age.The rebound method is suitable for the general survey of concrete strength during the construction process and is not suitable for direct supervision and inspection.Originality/value–By studying the correlation of test strength of tunnel lining concrete using two methods,the differences in test results of different methods are proposed to provide a reference for the test and evaluation of tunnel lining strength in railway engineering.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grants(52275471 and 52120105008)the Beijing Outstanding Young Scientist Program,and the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and smart maintenance.While promising,both methods have issues that need to be addressed.For example,model-based methods are limited by low computational accuracy and a high computational burden,and data-driven methods always suffer from poor interpretability and redundant features.To address these issues,the concept of data-model fusion(DMF)emerges as a promising solution.DMF involves integrating model-based methods with data-driven methods by incorporating big data into model-based methods or embedding relevant domain knowledge into data-driven methods.Despite growing efforts in the field of DMF,a unanimous definition of DMF remains elusive,and a general framework of DMF has been rarely discussed.This paper aims to address this gap by providing a thorough overview and categorization of both data-driven methods and model-based methods.Subsequently,this paper also presents the definition and categorization of DMF and discusses the general framework of DMF.Moreover,the primary seven applications of DMF are reviewed within the context of smart manufacturing and digital engineering.Finally,this paper directs the future directions of DMF.