Load time series analysis is critical for resource management and optimization decisions,especially automated analysis techniques.Existing research has insufficiently interpreted the overall characteristics of samples...Load time series analysis is critical for resource management and optimization decisions,especially automated analysis techniques.Existing research has insufficiently interpreted the overall characteristics of samples,leading to significant differences in load level detection conclusions for samples with different characteristics(trend,seasonality,cyclicality).Achieving automated,feature-adaptive,and quantifiable analysis methods remains a challenge.This paper proposes a Threshold Recognition-based Load Level Detection Algorithm(TRLLD),which effectively identifies different load level regions in samples of arbitrary size and distribution type based on sample characteristics.By utilizing distribution density uniformity,the algorithm classifies data points and ultimately obtains normalized load values.In the feature recognition step,the algorithm employs the Density Uniformity Index Based on Differences(DUID),High Load Level Concentration(HLLC),and Low Load Level Concentration(LLLC)to assess sample characteristics,which are independent of specific load values,providing a standardized perspective on features,ensuring high efficiency and strong interpretability.Compared to traditional methods,the proposed approach demonstrates better adaptive and real-time analysis capabilities.Experimental results indicate that it can effectively identify high load and low load regions in 16 groups of time series samples with different load characteristics,yielding highly interpretable results.The correlation between the DUID and sample density distribution uniformity reaches 98.08%.When introducing 10% MAD intensity noise,the maximum relative error is 4.72%,showcasing high robustness.Notably,it exhibits significant advantages in general and low sample scenarios.展开更多
<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I t...<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I trajectory characteristics to a large extent, so it is widely used in load identification. However, using single binary V-I trajectory feature for load identification has certain limitations. In order to improve the accuracy of load identification, the power feature is added on the basis of the binary V-I trajectory feature in this paper. We change the initial binary V-I trajectory into a new 3D feature by mapping the power feature to the third dimension. In order to reduce the impact of imbalance samples on load identification, the SVM SMOTE algorithm is used to balance the samples. Based on the deep learning method, the convolutional neural network model is used to extract the newly produced 3D feature to achieve load identification in this paper. The results indicate the new 3D feature has better observability and the proposed model has higher identification performance compared with other classification models on the public data set PLAID. </div>展开更多
Nowadays,the advancement of nonintrusive load monitoring(NILM)has been hastened by the ever-increasing requirements for the reasonable use of electricity by users and demand side management.Although existing researche...Nowadays,the advancement of nonintrusive load monitoring(NILM)has been hastened by the ever-increasing requirements for the reasonable use of electricity by users and demand side management.Although existing researches have tried their best to extract a wide variety of load features based on transient or steady state of electrical appliances,it is still very difficult for their algorithm to model the load decomposition problem of different electrical appliance types in a targeted manner to jointly mine their proposed features.This paper presents a very effective event-driven NILM solution,which aims to separately model different appliance types to mine the unique characteristics of appliances from multi-dimensional features,so that all electrical appliances can achieve the best classification performance.First,we convert the multi-classification problem into a serial multiple binary classification problem through a pre-sort model to simplify the original problem.Then,ConTrastive Loss K-Nearest Neighbour(CTLKNN)model with trainable weights is proposed to targeted mine appliance load characteristics.The simulation results show the effectiveness and stability of the proposed algorithm.Compared with existing algorithms,the proposed algorithm has improved the identification performance of all electrical appliance types.展开更多
Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,ru...Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.展开更多
Heating,ventilation,and air conditioning(HVAC)systems constitute a significant portion of the office building load and are important flexibility resources.However,the HVAC loads are often inaccessible to the utility o...Heating,ventilation,and air conditioning(HVAC)systems constitute a significant portion of the office building load and are important flexibility resources.However,the HVAC loads are often inaccessible to the utility or load aggregators who only have total load data.Most existing studies require subloads for supervised disaggregation or prior knowledge for unsupervised disaggregation,but such information is hard to obtain.It is necessary to develop an effective,completely unsupervised non-intrusive monitoring method to obtain the HVAC load data.In this study,a multiple seasonal-trend decomposition using the LOESS(MSTL)method is proposed to disaggregate the HVAC load from the total metered electricity data of office buildings.The effects of periodic types(daily,weekly,monthly,etc.),periodic sequences,and parallel/serial structures are analyzed.The proposed method is verified based on the historical electricity data of ten buildings.The results show that the proposed MSTL can accurately disaggregate the HVAC load with a coefficient of variation of the root mean square error(CVRMSE)of 10.94%,a normalized root mean squared error(NRMSE)of 2.1%,and a weighted absolute percentage error(WAPE)of 8.52%.Compared to single-cycle STL,the proposed method can significantly improve load disaggregation performance,with a maximum reduction of 16.36%in CVRMSE,5.3%in NRMSE,and 12.91%in WAPE.Backward-chain-based MSTL is recommended with higher accuracy and robustness.The proposed method provides an effective solution for utilities or load aggregators to improve demand response management and grid stability.展开更多
Identification of impact loads plays important role in marine structures health monitoring but is diffi-cult to be measured directly most time.This study investigates a two-stage framework for impact load localization...Identification of impact loads plays important role in marine structures health monitoring but is diffi-cult to be measured directly most time.This study investigates a two-stage framework for impact load localization and reconstruction,consisting of load region identification and local refined nodal search.For the region identification,a novel frequency response feature preprocessing method based on FFT is proposed and incorporated into a multi-layer perceptron(MLP)neural network as the embedding func-tion of the Matching Network(MN),the core model adopted for pattern recognition.Based on the region probabilities predicted by MN,a local refined nodal search strategy is provided,which is initialized by a region correction method for amending the possible region misclassification and further guided by error metrics with iteration search strategy.Moreover,the inverse problem in this study is formulated in the discretized state space expression with the reduced modal coordinates.For improving the load inverse accuracy affected by Zero Order Hold(ZOH)simplification in this formulation,a dynamic sensor filter strategy is provided.Eventually,a numerical experiment of impact load identification on a steel plate is performed and discussed,whose results indicate the validity and robustness of the proposed method.展开更多
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide...This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.展开更多
Recent advancement in computational capabilities has accelerated the research and development of non-intrusive load disaggregation.Non-intrusive load monitoring(NILM)offers many promising applications in the context o...Recent advancement in computational capabilities has accelerated the research and development of non-intrusive load disaggregation.Non-intrusive load monitoring(NILM)offers many promising applications in the context of energy efficiency and conservation.Load classification is a key component of NILM that relies on different artificial intelligence techniques,e.g.,machine learning.This study employs different machine learning models for load classification and presents a comprehensive performance evaluation of the employed models along with their comparative analysis.Moreover,this study also analyzes the role of input feature space dimensionality in the context of classification performance.For the above purposes,an event-based NILM methodology is presented and comprehensive digital simulation studies are carried out on a low sampling real-world electricity load acquired from four different households.Based on the presented analysis,it is concluded that the presented methodology yields promising results and the employed machine learning models generalize well for the invisible diverse testing data.The multi-layer perceptron learning model based on the neural network approach emerges as the most promising classifier.Furthermore,it is also noted that it significantly facilitates the classification performance by reducing the input feature space dimensionality.展开更多
Non-intrusive load monitoring(NILM)is a technique which extracts individual appliance consumption and operation state change information from the aggregate power consumption made by a single residential or commercial ...Non-intrusive load monitoring(NILM)is a technique which extracts individual appliance consumption and operation state change information from the aggregate power consumption made by a single residential or commercial unit.NILM plays a pivotal role in modernizing building energy management by disaggregating total energy consumption into individual appliance-level insights.This enables informed decision-making,energy optimization,and cost reduction.However,NILM encounters substantial challenges like signal noise,data availability,and data privacy concerns,necessitating advanced algorithms and robust methodologies to ensure accurate and secure energy disaggregation in real-world scenarios.Deep learning techniques have recently shown some promising results in NILM research,but training these neural networks requires significant labeled data.Obtaining initial sets of labeled data for the research by installing smart meters at the end of consumers’appliances is laborious and expensive and exposes users to severe privacy risks.It is also important to mention that most NILM research uses empirical observations instead of proper mathematical approaches to obtain the threshold value for determining appliance operation states(On/Off)from their respective energy consumption value.This paper proposes a novel semi-supervised multilabel deep learning technique based on temporal convolutional network(TCN)and long short-term memory(LSTM)for classifying appliance operation states from labeled and unlabeled data.The two thresholding techniques,namely Middle-Point Thresholding and Variance-Sensitive Thresholding,which are needed to derive the threshold values for determining appliance operation states,are also compared thoroughly.The superiority of the proposed model,along with finding the appliance states through the Middle-Point Thresholding method,is demonstrated through 15%improved overall improved F1micro score and almost 26%improved Hamming loss,F1 and Specificity score for the performance of individual appliance when compared to the benchmarking techniques that also used semi-supervised learning approach.展开更多
The research on non-intrusive load monitoring(NILM)and the growing deployment of home energy manage-ment system(HEMS)have made it possible for households to have a detailed understanding of their power usage and to ma...The research on non-intrusive load monitoring(NILM)and the growing deployment of home energy manage-ment system(HEMS)have made it possible for households to have a detailed understanding of their power usage and to make appliances participate in demand response(DR)programs.Appliance flexibility analysis helps the HEMS dispatching appli-ances to participate in DR programs without violating user’s comfort level.In this paper,a dynamic appliance flexibility analysis approach using the smart meter data is presented.In the training phase,the smart meter data is preprocessed by NILM to obtain user’s appliances usage behaviors,which is used to train the user model.During operation,the NILM is used to infer recent appliances usage behaviors,and then the user model predicts user’s appliances usage behaviors in the DR period considering long-term behaviors dependences,correlations between appliances and temporal information.The flexibility of each appliance is calculated based on the appliance characteristics as well as the predicted user’s appliances usage behaviors caused by the control of the appliance.The HEMS can choose the appliance with high flexibility to participate in the DR programs.The case study demonstrates the performance of the user model and illustrates how the appliance flexibility analysis is performed using a real-world case.展开更多
The aim of non-intrusive appliance load monitoring (NIALM) is to disaggregate the energy consumption of individual electrical appliances from total power consumption utilizing non-intrusive methods. In this paper, a...The aim of non-intrusive appliance load monitoring (NIALM) is to disaggregate the energy consumption of individual electrical appliances from total power consumption utilizing non-intrusive methods. In this paper, a systematic approach to 0N-0FF event detection and clustering analysis for NIALM were presented. From the aggregate power consumption data set, the data are passed through median filtering to reduce noise and prepared for the event detection algorithm. The event detection algorithm is to determine the switching of ON and OFF status of electrical appliances. The goodness- of-fit (GOF) methodology is the event detection algorithm implemented. After event detection, the events detected were paired into ON-0FF pairing appliances. The results from the ON-OFF pairing algorithm were further clustered in groups utilizing the K-means clustering analysis. The K- means clustering were implemented as an unsupervised learning methodology for the clustering analysis. The novelty of this paper is the determination of the time duration an electrical appliance is turned ON through combination of event detection, ON-OFF pairing and K- means clustering. The results of the algorithm implemen- tation were discussed and ideas on future work were also proposed.展开更多
This paper investigates the intelligent load monitoring problem with applications to practical energy management scenarios in smart grids.As one of the critical components for paving the way to smart grids’success,an...This paper investigates the intelligent load monitoring problem with applications to practical energy management scenarios in smart grids.As one of the critical components for paving the way to smart grids’success,an intelligent and feasible non-intrusive load monitoring(NILM)algorithm is urgently needed.However,most recent researches on NILM have not dealt with practical problems when applied to power grid,i.e.,①limited communication for slow-change systems;②requirement of low-cost hardware at the users’side;and③inconvenience to adapt to new households.Therefore,a novel NILM algorithm based on biology-inspired spiking neural network(SNN)has been developed to overcome the existing challenges.To provide intelligence in NILM,the developed SNN features an unsupervised learning rule,i.e.,spike-time dependent plasticity(STDP),which only requires the user to label one instance for each appliance while adapting to a new household.To upgrade the feasibility in NILM,the designed spiking neurons mimic the mechanism of human brain neurons that can be constructed by a resistor-capacitor(RC)circuit.In addition,a distributed computing system has been designed that divides the SNN into two parts,i.e.,smart outlets and local servers.Since the information flows as sparse binary vectors among spiking neurons in the developed SNN-based NILM,the high-frequency data can be easily compressed as the spike times,and are sent to the local server with limited communication capability,whereas it is unable to handle the traditional NILM.Finally,a series of experiments are conducted using a benchmark public dataset.Meanwhile,the effectiveness of developed SNN-based NILM can be demonstrated through comparisons with other emerging NILM algorithms such as the convolutional neural networks.展开更多
Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on...Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on the mining of unique load characteristics,few studies have extensively considered the high computational burden and sample training.Based on lowfrequency sampling data,a non-intrusive load monitoring algorithm utilizing the graph total variation(GTV)is proposed in this study.The algorithm can effectively depict the load state without the need for prior training.First,the combined Kmeans clustering algorithm and graph signals are used to build concise and accurate graph structures as load models.The GTV representing the internal structure of the graph signal is introduced as the optimization model and solved using the augmented Lagrangian iterative algorithm.The introduction of the difference operator reduces the computing cost and addresses the inaccurate reconstruction of the graph signal.With low-frequency sampling data,the algorithm only requires a little prior data and no training,thereby reducing the computing cost.Experiments conducted using the reference energy disaggregation dataset and almanac of minutely power dataset demonstrated the stable superiority of the algorithm and its low computational burden.展开更多
文摘Load time series analysis is critical for resource management and optimization decisions,especially automated analysis techniques.Existing research has insufficiently interpreted the overall characteristics of samples,leading to significant differences in load level detection conclusions for samples with different characteristics(trend,seasonality,cyclicality).Achieving automated,feature-adaptive,and quantifiable analysis methods remains a challenge.This paper proposes a Threshold Recognition-based Load Level Detection Algorithm(TRLLD),which effectively identifies different load level regions in samples of arbitrary size and distribution type based on sample characteristics.By utilizing distribution density uniformity,the algorithm classifies data points and ultimately obtains normalized load values.In the feature recognition step,the algorithm employs the Density Uniformity Index Based on Differences(DUID),High Load Level Concentration(HLLC),and Low Load Level Concentration(LLLC)to assess sample characteristics,which are independent of specific load values,providing a standardized perspective on features,ensuring high efficiency and strong interpretability.Compared to traditional methods,the proposed approach demonstrates better adaptive and real-time analysis capabilities.Experimental results indicate that it can effectively identify high load and low load regions in 16 groups of time series samples with different load characteristics,yielding highly interpretable results.The correlation between the DUID and sample density distribution uniformity reaches 98.08%.When introducing 10% MAD intensity noise,the maximum relative error is 4.72%,showcasing high robustness.Notably,it exhibits significant advantages in general and low sample scenarios.
文摘<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I trajectory characteristics to a large extent, so it is widely used in load identification. However, using single binary V-I trajectory feature for load identification has certain limitations. In order to improve the accuracy of load identification, the power feature is added on the basis of the binary V-I trajectory feature in this paper. We change the initial binary V-I trajectory into a new 3D feature by mapping the power feature to the third dimension. In order to reduce the impact of imbalance samples on load identification, the SVM SMOTE algorithm is used to balance the samples. Based on the deep learning method, the convolutional neural network model is used to extract the newly produced 3D feature to achieve load identification in this paper. The results indicate the new 3D feature has better observability and the proposed model has higher identification performance compared with other classification models on the public data set PLAID. </div>
基金supported by National Natural Science Foundation of China(No.61531007).
文摘Nowadays,the advancement of nonintrusive load monitoring(NILM)has been hastened by the ever-increasing requirements for the reasonable use of electricity by users and demand side management.Although existing researches have tried their best to extract a wide variety of load features based on transient or steady state of electrical appliances,it is still very difficult for their algorithm to model the load decomposition problem of different electrical appliance types in a targeted manner to jointly mine their proposed features.This paper presents a very effective event-driven NILM solution,which aims to separately model different appliance types to mine the unique characteristics of appliances from multi-dimensional features,so that all electrical appliances can achieve the best classification performance.First,we convert the multi-classification problem into a serial multiple binary classification problem through a pre-sort model to simplify the original problem.Then,ConTrastive Loss K-Nearest Neighbour(CTLKNN)model with trainable weights is proposed to targeted mine appliance load characteristics.The simulation results show the effectiveness and stability of the proposed algorithm.Compared with existing algorithms,the proposed algorithm has improved the identification performance of all electrical appliance types.
基金supported by the State Grid Science&Technology Project of China(5400-202224153A-1-1-ZN).
文摘Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.
文摘Heating,ventilation,and air conditioning(HVAC)systems constitute a significant portion of the office building load and are important flexibility resources.However,the HVAC loads are often inaccessible to the utility or load aggregators who only have total load data.Most existing studies require subloads for supervised disaggregation or prior knowledge for unsupervised disaggregation,but such information is hard to obtain.It is necessary to develop an effective,completely unsupervised non-intrusive monitoring method to obtain the HVAC load data.In this study,a multiple seasonal-trend decomposition using the LOESS(MSTL)method is proposed to disaggregate the HVAC load from the total metered electricity data of office buildings.The effects of periodic types(daily,weekly,monthly,etc.),periodic sequences,and parallel/serial structures are analyzed.The proposed method is verified based on the historical electricity data of ten buildings.The results show that the proposed MSTL can accurately disaggregate the HVAC load with a coefficient of variation of the root mean square error(CVRMSE)of 10.94%,a normalized root mean squared error(NRMSE)of 2.1%,and a weighted absolute percentage error(WAPE)of 8.52%.Compared to single-cycle STL,the proposed method can significantly improve load disaggregation performance,with a maximum reduction of 16.36%in CVRMSE,5.3%in NRMSE,and 12.91%in WAPE.Backward-chain-based MSTL is recommended with higher accuracy and robustness.The proposed method provides an effective solution for utilities or load aggregators to improve demand response management and grid stability.
基金supported by National Natural Science Founda-tion of China(Grant No.U2241266,Grant No.51979163 and Grant No.51809168)Marine Equipment Foresight Innovation Union Project(ZCJDQZ202304B02)the Fundamental Research Funds for the Central Universities.
文摘Identification of impact loads plays important role in marine structures health monitoring but is diffi-cult to be measured directly most time.This study investigates a two-stage framework for impact load localization and reconstruction,consisting of load region identification and local refined nodal search.For the region identification,a novel frequency response feature preprocessing method based on FFT is proposed and incorporated into a multi-layer perceptron(MLP)neural network as the embedding func-tion of the Matching Network(MN),the core model adopted for pattern recognition.Based on the region probabilities predicted by MN,a local refined nodal search strategy is provided,which is initialized by a region correction method for amending the possible region misclassification and further guided by error metrics with iteration search strategy.Moreover,the inverse problem in this study is formulated in the discretized state space expression with the reduced modal coordinates.For improving the load inverse accuracy affected by Zero Order Hold(ZOH)simplification in this formulation,a dynamic sensor filter strategy is provided.Eventually,a numerical experiment of impact load identification on a steel plate is performed and discussed,whose results indicate the validity and robustness of the proposed method.
基金supported by the State Grid Science&Technology Project(5100-202114296A-0-0-00).
文摘This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective.
文摘Recent advancement in computational capabilities has accelerated the research and development of non-intrusive load disaggregation.Non-intrusive load monitoring(NILM)offers many promising applications in the context of energy efficiency and conservation.Load classification is a key component of NILM that relies on different artificial intelligence techniques,e.g.,machine learning.This study employs different machine learning models for load classification and presents a comprehensive performance evaluation of the employed models along with their comparative analysis.Moreover,this study also analyzes the role of input feature space dimensionality in the context of classification performance.For the above purposes,an event-based NILM methodology is presented and comprehensive digital simulation studies are carried out on a low sampling real-world electricity load acquired from four different households.Based on the presented analysis,it is concluded that the presented methodology yields promising results and the employed machine learning models generalize well for the invisible diverse testing data.The multi-layer perceptron learning model based on the neural network approach emerges as the most promising classifier.Furthermore,it is also noted that it significantly facilitates the classification performance by reducing the input feature space dimensionality.
基金The completion of this research was made possible thanks to The Natural Sciences and Engineering Research Council of Canada(NSERC)and a start-up grant from Concordia University.
文摘Non-intrusive load monitoring(NILM)is a technique which extracts individual appliance consumption and operation state change information from the aggregate power consumption made by a single residential or commercial unit.NILM plays a pivotal role in modernizing building energy management by disaggregating total energy consumption into individual appliance-level insights.This enables informed decision-making,energy optimization,and cost reduction.However,NILM encounters substantial challenges like signal noise,data availability,and data privacy concerns,necessitating advanced algorithms and robust methodologies to ensure accurate and secure energy disaggregation in real-world scenarios.Deep learning techniques have recently shown some promising results in NILM research,but training these neural networks requires significant labeled data.Obtaining initial sets of labeled data for the research by installing smart meters at the end of consumers’appliances is laborious and expensive and exposes users to severe privacy risks.It is also important to mention that most NILM research uses empirical observations instead of proper mathematical approaches to obtain the threshold value for determining appliance operation states(On/Off)from their respective energy consumption value.This paper proposes a novel semi-supervised multilabel deep learning technique based on temporal convolutional network(TCN)and long short-term memory(LSTM)for classifying appliance operation states from labeled and unlabeled data.The two thresholding techniques,namely Middle-Point Thresholding and Variance-Sensitive Thresholding,which are needed to derive the threshold values for determining appliance operation states,are also compared thoroughly.The superiority of the proposed model,along with finding the appliance states through the Middle-Point Thresholding method,is demonstrated through 15%improved overall improved F1micro score and almost 26%improved Hamming loss,F1 and Specificity score for the performance of individual appliance when compared to the benchmarking techniques that also used semi-supervised learning approach.
文摘The research on non-intrusive load monitoring(NILM)and the growing deployment of home energy manage-ment system(HEMS)have made it possible for households to have a detailed understanding of their power usage and to make appliances participate in demand response(DR)programs.Appliance flexibility analysis helps the HEMS dispatching appli-ances to participate in DR programs without violating user’s comfort level.In this paper,a dynamic appliance flexibility analysis approach using the smart meter data is presented.In the training phase,the smart meter data is preprocessed by NILM to obtain user’s appliances usage behaviors,which is used to train the user model.During operation,the NILM is used to infer recent appliances usage behaviors,and then the user model predicts user’s appliances usage behaviors in the DR period considering long-term behaviors dependences,correlations between appliances and temporal information.The flexibility of each appliance is calculated based on the appliance characteristics as well as the predicted user’s appliances usage behaviors caused by the control of the appliance.The HEMS can choose the appliance with high flexibility to participate in the DR programs.The case study demonstrates the performance of the user model and illustrates how the appliance flexibility analysis is performed using a real-world case.
文摘The aim of non-intrusive appliance load monitoring (NIALM) is to disaggregate the energy consumption of individual electrical appliances from total power consumption utilizing non-intrusive methods. In this paper, a systematic approach to 0N-0FF event detection and clustering analysis for NIALM were presented. From the aggregate power consumption data set, the data are passed through median filtering to reduce noise and prepared for the event detection algorithm. The event detection algorithm is to determine the switching of ON and OFF status of electrical appliances. The goodness- of-fit (GOF) methodology is the event detection algorithm implemented. After event detection, the events detected were paired into ON-0FF pairing appliances. The results from the ON-OFF pairing algorithm were further clustered in groups utilizing the K-means clustering analysis. The K- means clustering were implemented as an unsupervised learning methodology for the clustering analysis. The novelty of this paper is the determination of the time duration an electrical appliance is turned ON through combination of event detection, ON-OFF pairing and K- means clustering. The results of the algorithm implemen- tation were discussed and ideas on future work were also proposed.
基金supported by the SGCC Science and Technology Program under project“Distributed High-Speed Frequency Control Under UHVDC Bipolar Blocking Fault Scenario”(No.SGGR0000DLJS1800934)。
文摘This paper investigates the intelligent load monitoring problem with applications to practical energy management scenarios in smart grids.As one of the critical components for paving the way to smart grids’success,an intelligent and feasible non-intrusive load monitoring(NILM)algorithm is urgently needed.However,most recent researches on NILM have not dealt with practical problems when applied to power grid,i.e.,①limited communication for slow-change systems;②requirement of low-cost hardware at the users’side;and③inconvenience to adapt to new households.Therefore,a novel NILM algorithm based on biology-inspired spiking neural network(SNN)has been developed to overcome the existing challenges.To provide intelligence in NILM,the developed SNN features an unsupervised learning rule,i.e.,spike-time dependent plasticity(STDP),which only requires the user to label one instance for each appliance while adapting to a new household.To upgrade the feasibility in NILM,the designed spiking neurons mimic the mechanism of human brain neurons that can be constructed by a resistor-capacitor(RC)circuit.In addition,a distributed computing system has been designed that divides the SNN into two parts,i.e.,smart outlets and local servers.Since the information flows as sparse binary vectors among spiking neurons in the developed SNN-based NILM,the high-frequency data can be easily compressed as the spike times,and are sent to the local server with limited communication capability,whereas it is unable to handle the traditional NILM.Finally,a series of experiments are conducted using a benchmark public dataset.Meanwhile,the effectiveness of developed SNN-based NILM can be demonstrated through comparisons with other emerging NILM algorithms such as the convolutional neural networks.
基金supported by National Natural Science Foundation of China(No.52107117)。
文摘Non-intrusive load monitoring is a technique for monitoring the operating conditions of electrical appliances by collecting the aggregated electrical information at the household power inlet.Despite several studies on the mining of unique load characteristics,few studies have extensively considered the high computational burden and sample training.Based on lowfrequency sampling data,a non-intrusive load monitoring algorithm utilizing the graph total variation(GTV)is proposed in this study.The algorithm can effectively depict the load state without the need for prior training.First,the combined Kmeans clustering algorithm and graph signals are used to build concise and accurate graph structures as load models.The GTV representing the internal structure of the graph signal is introduced as the optimization model and solved using the augmented Lagrangian iterative algorithm.The introduction of the difference operator reduces the computing cost and addresses the inaccurate reconstruction of the graph signal.With low-frequency sampling data,the algorithm only requires a little prior data and no training,thereby reducing the computing cost.Experiments conducted using the reference energy disaggregation dataset and almanac of minutely power dataset demonstrated the stable superiority of the algorithm and its low computational burden.