AIM:To report and analyze cases of sterile intraocular inflammation(IOI)following intravitreal faricimab injections in patients treated for neovascular age-related macular degeneration(nAMD)and diabetic macular edema(...AIM:To report and analyze cases of sterile intraocular inflammation(IOI)following intravitreal faricimab injections in patients treated for neovascular age-related macular degeneration(nAMD)and diabetic macular edema(DME).METHODS:This double-center case series included nine eyes of six patients who developed uveitis after faricimab therapy.Comprehensive clinical evaluation was performed,including slit-lamp examination,intraocular pressure(IOP)measurement,fluorescein and indocyanine green angiography(ICGA),and laboratory tests.Inflammatory responses were treated with topical or systemic corticosteroids,and patients were monitored for visual acuity and inflammatory activity.RESULTS:The incidence of IOI was 0.8%per patient(Innsbruck)and 0.23%(Czechia),with inflammation typically occurring between the third and sixth injection(mean interval:10d post-injection).Inflammator y presentations ranged from anterior uveitis to posterior segment involvement.One notable case demonstrated novel choroidal hypofluorescent lesions on angiography,suggesting deeper ocular involvement.The mean patient age was 76y;five of six affected patients were female.All cases responded to local and systemic corticosteroids,with full recovery of initial visual acuity.CONCLUSION:Sterile IOI after faricimab appears to be a rare but relevant adverse event.Although the incidence falls within expected ranges for anti-vascular endothelial growth factor(anti-VEGF)agents,the observed choroidal involvement represents a potentially new safety signal.Prompt diagnosis and corticosteroid therapy are effective in all cases.Our findings support the need for vigilant post-marketing surveillance and further studies to better understand the underlying mechanisms and risk factors of faricimab-associated inflammation.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
Multivariate time series forecasting iswidely used in traffic planning,weather forecasting,and energy consumption.Series decomposition algorithms can help models better understand the underlying patterns of the origin...Multivariate time series forecasting iswidely used in traffic planning,weather forecasting,and energy consumption.Series decomposition algorithms can help models better understand the underlying patterns of the original series to improve the forecasting accuracy of multivariate time series.However,the decomposition kernel of previous decomposition-based models is fixed,and these models have not considered the differences in frequency fluctuations between components.These problems make it difficult to analyze the intricate temporal variations of real-world time series.In this paper,we propose a series decomposition-based Mamba model,DecMamba,to obtain the intricate temporal dependencies and the dependencies among different variables of multivariate time series.A variable-level adaptive kernel combination search module is designed to interact with information on different trends and periods between variables.Two backbone structures are proposed to emphasize the differences in frequency fluctuations of seasonal and trend components.Mamba with superior performance is used instead of a Transformer in backbone structures to capture the dependencies among different variables.A new embedding block is designed to capture the temporal features better,especially for the high-frequency seasonal component whose semantic information is difficult to acquire.A gating mechanism is introduced to the decoder in the seasonal backbone to improve the prediction accuracy.A comparison with ten state-of-the-art models on seven real-world datasets demonstrates that DecMamba can better model the temporal dependencies and the dependencies among different variables,guaranteeing better prediction performance for multivariate time series.展开更多
The level 3 case for Ramanujan-type series has been considered as the most mysterious and the most challenging,out of all possible levels for Ramanujan-type series.This motivates the development of new techniques for ...The level 3 case for Ramanujan-type series has been considered as the most mysterious and the most challenging,out of all possible levels for Ramanujan-type series.This motivates the development of new techniques for constructing Ramanujan-type series of level 3.Chan and Liaw introduced an alternating analogue of the Borwein brothers’identity for Ramanujan-type series of level 3;subsequently,Chan,Liaw,and Tian formulated another proof of the Chan–Liaw identity,via the use of Ramanujan’s class invariant.Using the elliptic lambda function and the elliptic alpha function,we prove,via a limiting case of the Kummer–Goursat transformation,a new identity for evaluating the summands for alternating Ramanujan-type series of level 3,and we apply this new identity to prove three conjectured formulas for quadratic-irrational,Ramanujan-type series that had been discovered via numerical experiments with Maple in 2012 by Aldawoud.We also apply our identity to prove a new Ramanujan-type series of level 3 with a quartic convergence rate and quartic coefficients.展开更多
Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including at...Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050.展开更多
Active landslides pose a significant threat globally,endangering lives and property.Effective monitoring and forecasting of displacements are essential for the timely warnings and mitigation of these events.Interferom...Active landslides pose a significant threat globally,endangering lives and property.Effective monitoring and forecasting of displacements are essential for the timely warnings and mitigation of these events.Interferometric synthetic aperture radar(InSAR)stands out as an efficient and prevalent tool for monitoring landslide deformation and offers new prospects for displacement prediction.However,challenges such as inherent limitation of satellite viewing geometry,long revisit cycles,and limited data volume hinder its application in displacement forecasting,notably for landslides with near-north-south deformation less detectable by InSAR.To address these issues,we propose a novel strategy for predicting three-dimensional(3D)landslide displacement,integrating InSAR and global navigation satellite system(GNSS)measurements with machine learning(ML).This framework first synergizes InSAR line-of-sight(LOS)results with GNSS horizontal data to reconstruct 3D displacement time series.It then employs ML models to capture complex nonlinear relationships between external triggers,landslide evolutionary states,and 3D displacements,thus enabling accurate future deformation predictions.Utilizing four advanced ML algorithms,i.e.random forest(RF),support vector machine(SVM),long short-term memory(LSTM),and gated recurrent unit(GRU),with Bayesian optimization(BO)for hyperparameter tuning,we applied this innovative approach to the north-facing,slow-moving Xinpu landslide in the Three Gorges Reservoir Area(TGRA)of China.Leveraging over 6.5 years of Sentinel-1 satellite data and GNSS measurements,our framework demonstrates satisfactory and robust prediction performance,with an average root mean square deviation(RMSD)of 9.62 mm and a correlation coefficient(CC)of 0.996.This study presents a promising strategy for 3D displacement prediction,illustrating the efficacy of integrating InSAR monitoring with ML forecasting in enhancing landslide early warning capabilities.展开更多
Time series anomaly detection is crucial in finance,healthcare,and industrial monitoring.However,traditional methods often face challenges when handling time series data,such as limited feature extraction capability,p...Time series anomaly detection is crucial in finance,healthcare,and industrial monitoring.However,traditional methods often face challenges when handling time series data,such as limited feature extraction capability,poor temporal dependency handling,and suboptimal real-time performance,sometimes even neglecting the temporal relationships between data.To address these issues and improve anomaly detection performance by better capturing temporal dependencies,we propose an unsupervised time series anomaly detection method,VLT-Anomaly.First,we enhance the Variational Autoencoder(VAE)module by redesigning its network structure to better suit anomaly detection through data reconstruction.We introduce hyperparameters to control the weight of the Kullback-Leibler(KL)divergence term in the Evidence Lower Bound(ELBO),thereby improving the encoder module’s decoupling and expressive power in the latent space,which yields more effective latent representations of the data.Next,we incorporate transformer and Long Short-Term Memory(LSTM)modules to estimate the long-term dependencies of the latent representations,capturing both forward and backward temporal relationships and performing time series forecasting.Finally,we compute the reconstruction error by averaging the predicted results and decoder reconstruction and detect anomalies through grid search for optimal threshold values.Experimental results demonstrate that the proposed method performs superior anomaly detection on multiple public time series datasets,effectively extracting complex time-related features and enabling efficient computation and real-time anomaly detection.It improves detection accuracy and robustness while reducing false positives and false negatives.展开更多
Time series forecasting is important in the fields of finance,energy,and meteorology,but traditional methods often fail to cope with the complex nonlinear and nonstationary processes of real data.In this paper,we prop...Time series forecasting is important in the fields of finance,energy,and meteorology,but traditional methods often fail to cope with the complex nonlinear and nonstationary processes of real data.In this paper,we propose the FractalNet-LSTM model,which combines fractal convolutional units with recurrent long short-term memory(LSTM)layers to model time series efficiently.To test the effectiveness of the model,data with complex structures and patterns,in particular,with seasonal and cyclical effects,were used.To better demonstrate the obtained results and the formed conclusions,the model performance was shown on the datasets of electricity consumption,sunspot activity,and Spotify stock price.The result showed that the proposed model outperforms traditional approaches at medium forecasting horizons and demonstrates high accuracy for data with long-term and cyclical dependencies.However,for financial data with high volatility,the model’s efficiency decreases at long forecasting horizons,indicating the need for further adaptation.The findings suggest further adaptation.The findings suggest that integrating fractal properties into neural network architecture improves the accuracy of time series forecasting and can be useful for developing more accurate and reliable forecasting systems in various industries.展开更多
Deep learning(DL)has revolutionized time series forecasting(TSF),surpassing traditional statistical methods(e.g.,ARIMA)and machine learning techniques in modeling complex nonlinear dynamics and long-term dependencies ...Deep learning(DL)has revolutionized time series forecasting(TSF),surpassing traditional statistical methods(e.g.,ARIMA)and machine learning techniques in modeling complex nonlinear dynamics and long-term dependencies prevalent in real-world temporal data.This comprehensive survey reviews state-of-the-art DL architectures forTSF,focusing on four core paradigms:(1)ConvolutionalNeuralNetworks(CNNs),adept at extracting localized temporal features;(2)Recurrent Neural Networks(RNNs)and their advanced variants(LSTM,GRU),designed for sequential dependency modeling;(3)Graph Neural Networks(GNNs),specialized for forecasting structured relational data with spatial-temporal dependencies;and(4)Transformer-based models,leveraging self-attention mechanisms to capture global temporal patterns efficiently.We provide a rigorous analysis of the theoretical underpinnings,recent algorithmic advancements(e.g.,TCNs,attention mechanisms,hybrid architectures),and practical applications of each framework,supported by extensive benchmark datasets(e.g.,ETT,traffic flow,financial indicators)and standardized evaluation metrics(MAE,MSE,RMSE).Critical challenges,including handling irregular sampling intervals,integrating domain knowledge for robustness,and managing computational complexity,are thoroughly discussed.Emerging research directions highlighted include diffusion models for uncertainty quantification,hybrid pipelines combining classical statistical and DL techniques for enhanced interpretability,quantile regression with Transformers for riskaware forecasting,and optimizations for real-time deployment.This work serves as an essential reference,consolidating methodological innovations,empirical resources,and future trends to bridge the gap between theoretical research and practical implementation needs for researchers and practitioners in the field.展开更多
We evaluate some series with summands involving a single binomial coefficient(^6k 3k).For example,we prove that■Motivated by Galois theory,we introduce the so-called Duality Principle for irrational series of Ramanu...We evaluate some series with summands involving a single binomial coefficient(^6k 3k).For example,we prove that■Motivated by Galois theory,we introduce the so-called Duality Principle for irrational series of Ramanujan’s type or Zeilberger’s type,and apply it to find 26 new irrational series identities.For example,we conjecture that■where ■for any integer d≡0,1 (mod 4) with (d/k) the Kronecker symbol.展开更多
The discharge and plasma characteristics of Ag magnetron sputtering discharge operated near the electron series resonance(ESR)oscillation,which was excited using the driving frequency of 27.12 MHz,was investigated.The...The discharge and plasma characteristics of Ag magnetron sputtering discharge operated near the electron series resonance(ESR)oscillation,which was excited using the driving frequency of 27.12 MHz,was investigated.The imaginary part of impedance was found to undergo a transition from capacitive to inductive on varying radio-frequency(RF)power,and the conditions for the ESR excitation were satisfied.The current–voltage(I–V)characteristic of discharge showed that the lower discharge voltage with higher current was an important feature of RF magnetron sputtering operated near the ESR oscillation,which was caused by the small impedance Z originated from the mutual compensation between the sheath capacitive reactance and the plasma inductive reactance.The higher electron temperature,ion flux density and ion energy as well as the moderate electron density were obtained.The interaction of higher energy ions on substrate surface improved the crystallographic quality of Ag films.Therefore,the 27.12 MHz magnetron sputtering operated near the ESR oscillation has better deposition characteristics than that of commercial 13.56 MHz RF magnetron sputtering.展开更多
Anomaly detection(AD)in time series data is widely applied across various industries for monitoring and security applications,emerging as a key research focus within the field of deep learning.While many methods based...Anomaly detection(AD)in time series data is widely applied across various industries for monitoring and security applications,emerging as a key research focus within the field of deep learning.While many methods based on different normality assumptions performwell in specific scenarios,they often neglected the overall normality issue.Some feature extraction methods incorporate pre-training processes but they may not be suitable for time series anomaly detection,leading to decreased performance.Additionally,real-world time series samples are rarely free from noise,making them susceptible to outliers,which further impacts detection accuracy.To address these challenges,we propose a novel anomaly detection method called Robust One-Class Classification Detection(ROC).This approach utilizes an autoencoder(AE)to learn features while constraining the context vectors fromthe AE within a sufficiently small hypersphere,akin to One-Class Classification(OC)methods.By simultaneously optimizing two hypothetical objective functions,ROC captures various aspects of normality.We categorize the input raw time series into clean and outlier sequences,reducing the impact of outliers on compressed feature representation.Experimental results on public datasets indicate that our approach outperforms existing baselinemethods and substantially improves model robustness.展开更多
BACKGROUND In critical care practice,difficult airway management poses a substantial challenge,necessitating urgent intervention to ensure patient safety and optimize outcomes.Extracorporeal membrane oxygenation(ECMO)...BACKGROUND In critical care practice,difficult airway management poses a substantial challenge,necessitating urgent intervention to ensure patient safety and optimize outcomes.Extracorporeal membrane oxygenation(ECMO)is a potential rescue tool in patients with severe airway compromise,although evidence of its efficacy and safety remains limited.AIM To review the local experience of using ECMO support in patients with difficult airway management.METHODS This retrospective case series study includes patients with difficult airway management who required ECMO support at a tertiary hospital in a Middle Eastern country.RESULTS Between 2016 and 2023,a total of 13 patients required ECMO support due to challenging airway patency in the operating room.Indications for ECMO encompassed various diagnoses,including tracheal stenosis,external tracheal compression,and subglottic stenosis.Surgical interventions such as tracheal resection and anastomosis often necessitated ECMO support to maintain adequate oxygenation and hemodynamic stability.The duration of ECMO support ranged from standby mode(ECMO implantation is readily available)to several days,with relatively infrequent complications observed.Despite the challenges encountered,most patients survived hospital discharge,highlighting the effectiveness of ECMO in managing difficult airways.CONCLUSION This study underscores the crucial role of ECMO as a life-saving intervention in selected cases of difficult airway management.Further research is warranted to refine the understanding of optimal management strategies and improve outcomes in this challenging patient population.展开更多
In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditio...In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.展开更多
Flammable gas leakage in a semi-enclosed scenario can lead to catastrophic consequences,such as vapor cloud explosions.To reduce casualties and environmental damage,predicting the consequences based on the initial con...Flammable gas leakage in a semi-enclosed scenario can lead to catastrophic consequences,such as vapor cloud explosions.To reduce casualties and environmental damage,predicting the consequences based on the initial concentration time series monitored by sensors is of paramount importance.This paper proposes a consequence prediction model based on deep learning using variable-length concentration time series.Incomplete concentration values are padded and then passed through a masking layer,enabling the network to focus exclusively on valid data.The temporal correlations are extracted using a long short-term memory(LSTM)network,and the final prediction results are obtained by passing these features into a feedforward neural network(FNN).Computational fluid dynamics(CFD)software was used to simulate the leakage of hydrogen-mixed natural gas.Experiments were carried out for nine distinct prediction targets,derived from combinations of the mass and centroid coordinates of vapor clouds formed by various gases.These prediction targets were modeled using both fixed-length and variable-length input sequences.The high accuracy of the experimental results validates the effectiveness of the proposed method.展开更多
As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheles...As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheless,the traditional ESN and the majority of its variants are devised in the light of the second-order statistical information of data(e.g.,variance and covariance),while more information is neglected.In the context of information theoretic learning,correntropy demonstrates the capacity to grab more information from data.Therefore,under the guidelines of the maximum correntropy criterion,this paper proposes a correntropy-based echo state network(CESN)in which the first-order and higher-order information of data is captured,promoting robustness to noise.Furthermore,an incremental learning algorithm for the CESN is presented,which has the expertise to update the CESN when new data arrives,eliminating the need to retrain the network from scratch.Finally,experiments on benchmark problems and comparisons with existing works are provided to verify the effectiveness and superiority of the proposed CESN.展开更多
To analyze the complexity of interval-valued time series(ITSs),a novel interval multiscale sample entropy(IMSE)methodology is proposed in this paper.To validate the effectiveness and feasibility of IMSE in characteriz...To analyze the complexity of interval-valued time series(ITSs),a novel interval multiscale sample entropy(IMSE)methodology is proposed in this paper.To validate the effectiveness and feasibility of IMSE in characterizing ITS complexity,the method is initially implemented on simulated time series.The experimental results demonstrate that IMSE not only successfully identifies series complexity and long-range autocorrelation patterns but also effectively captures the intrinsic relationships between interval boundaries.Furthermore,the test results show that IMSE can also be applied to measure the complexity of multivariate time series of equal length.Subsequently,IMSE is applied to investigate interval temperature series(2000–2023)from four Chinese cities:Shanghai,Kunming,Chongqing,and Nagqu.The results show that IMSE not only distinctly differentiates temperature patterns across cities but also effectively quantifies complexity and long-term autocorrelation in ITSs.All the results indicate that IMSE is an alternative and effective method for studying the complexity of ITSs.展开更多
Timely identification and forecast of maize tasseling date(TD)are very important for agronomic management,yield prediction,and crop phenotype estimation.Remote sensing-based phenology monitoring has mostly relied on t...Timely identification and forecast of maize tasseling date(TD)are very important for agronomic management,yield prediction,and crop phenotype estimation.Remote sensing-based phenology monitoring has mostly relied on time series spectral index data of the complete growth season.A recent development in maize phenology detection research is to use canopy height(CH)data instead of spectral indices,but its robustness in multiple treatments and stages has not been confirmed.Meanwhile,because data of a complete growth season are needed,the need for timely in-season TD identification remains unmet.This study proposed an approach to timely identify and forecast the maize TD.We obtained RGB and light detection and ranging(Li DAR)data using the unmanned aerial vehicle platform over plots of different maize varieties under multiple treatments.After CH estimation,the feature points(inflection point)from the Logistic curve of the CH time series were extracted as TD.We examined the impact of various independent variables(day of year vs.accumulated growing degree days(AGDD)),sensors(RGB and Li DAR),time series denoise methods,different feature points,and temporal resolution on TD identification.Lastly,we used early CH time series data to predict height growth and further forecast TD.The results showed that using the 99th percentile of plot scale digital surface model and the minimum digital terrain model from Li DAR to estimate maize CH was the most stable across treatments and stages(R~2:0.928 to0.943).For TD identification,the best performance was achieved by using Li DAR data with AGDD as the independent variable,combined with the knee point method,resulting in RMSE of 2.95 d.The high accuracy was maintained at temporal resolutions as coarse as 14 d.TD forecast got more accurate as the CH time series extended.The optimal timing for forecasting TD was when the CH exceeded half of its maximum.Using only Li DAR CH data below 1.6 m and empirical growth rate estimates,the forecasted TD showed an RMSE of 3.90 d.In conclusion,this study exploited the growth characteristics of maize height to provide a practical approach for the timely identification and forecast of maize TD.展开更多
Predictive maintenance often involves imbalanced multivariate time series datasets with scarce failure events,posing challenges for model training due to the high dimensionality of the data and the need for domain-spe...Predictive maintenance often involves imbalanced multivariate time series datasets with scarce failure events,posing challenges for model training due to the high dimensionality of the data and the need for domain-specific preprocessing,which frequently leads to the development of large and complex models.Inspired by the success of Large Language Models(LLMs),transformer-based foundation models have been developed for time series(TSFM).These models have been proven to reconstruct time series in a zero-shot manner,being able to capture different patterns that effectively characterize time series.This paper proposes the use of TSFM to generate embeddings of the input data space,making them more interpretable for machine learning models.To evaluate the effectiveness of our approach,we trained three classical machine learning algorithms and one neural network using the embeddings generated by the TSFM called Moment for predicting the remaining useful life of aircraft engines.We test the models trained with both the full training dataset and only 10%of the training samples.Our results show that training simple models,such as support vector regressors or neural networks,with embeddings generated by Moment not only accelerates the training process but also enhances performance in few-shot learning scenarios,where data is scarce.This suggests a promising alternative to complex deep learning architectures,particularly in industrial contexts with limited labeled data.展开更多
In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh enviro...In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score.展开更多
文摘AIM:To report and analyze cases of sterile intraocular inflammation(IOI)following intravitreal faricimab injections in patients treated for neovascular age-related macular degeneration(nAMD)and diabetic macular edema(DME).METHODS:This double-center case series included nine eyes of six patients who developed uveitis after faricimab therapy.Comprehensive clinical evaluation was performed,including slit-lamp examination,intraocular pressure(IOP)measurement,fluorescein and indocyanine green angiography(ICGA),and laboratory tests.Inflammatory responses were treated with topical or systemic corticosteroids,and patients were monitored for visual acuity and inflammatory activity.RESULTS:The incidence of IOI was 0.8%per patient(Innsbruck)and 0.23%(Czechia),with inflammation typically occurring between the third and sixth injection(mean interval:10d post-injection).Inflammator y presentations ranged from anterior uveitis to posterior segment involvement.One notable case demonstrated novel choroidal hypofluorescent lesions on angiography,suggesting deeper ocular involvement.The mean patient age was 76y;five of six affected patients were female.All cases responded to local and systemic corticosteroids,with full recovery of initial visual acuity.CONCLUSION:Sterile IOI after faricimab appears to be a rare but relevant adverse event.Although the incidence falls within expected ranges for anti-vascular endothelial growth factor(anti-VEGF)agents,the observed choroidal involvement represents a potentially new safety signal.Prompt diagnosis and corticosteroid therapy are effective in all cases.Our findings support the need for vigilant post-marketing surveillance and further studies to better understand the underlying mechanisms and risk factors of faricimab-associated inflammation.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
基金supported in part by the Interdisciplinary Project of Dalian University(DLUXK-2023-ZD-001).
文摘Multivariate time series forecasting iswidely used in traffic planning,weather forecasting,and energy consumption.Series decomposition algorithms can help models better understand the underlying patterns of the original series to improve the forecasting accuracy of multivariate time series.However,the decomposition kernel of previous decomposition-based models is fixed,and these models have not considered the differences in frequency fluctuations between components.These problems make it difficult to analyze the intricate temporal variations of real-world time series.In this paper,we propose a series decomposition-based Mamba model,DecMamba,to obtain the intricate temporal dependencies and the dependencies among different variables of multivariate time series.A variable-level adaptive kernel combination search module is designed to interact with information on different trends and periods between variables.Two backbone structures are proposed to emphasize the differences in frequency fluctuations of seasonal and trend components.Mamba with superior performance is used instead of a Transformer in backbone structures to capture the dependencies among different variables.A new embedding block is designed to capture the temporal features better,especially for the high-frequency seasonal component whose semantic information is difficult to acquire.A gating mechanism is introduced to the decoder in the seasonal backbone to improve the prediction accuracy.A comparison with ten state-of-the-art models on seven real-world datasets demonstrates that DecMamba can better model the temporal dependencies and the dependencies among different variables,guaranteeing better prediction performance for multivariate time series.
基金supported by a Killam Postdoctoral Fellowship from the Killam Trusts.
文摘The level 3 case for Ramanujan-type series has been considered as the most mysterious and the most challenging,out of all possible levels for Ramanujan-type series.This motivates the development of new techniques for constructing Ramanujan-type series of level 3.Chan and Liaw introduced an alternating analogue of the Borwein brothers’identity for Ramanujan-type series of level 3;subsequently,Chan,Liaw,and Tian formulated another proof of the Chan–Liaw identity,via the use of Ramanujan’s class invariant.Using the elliptic lambda function and the elliptic alpha function,we prove,via a limiting case of the Kummer–Goursat transformation,a new identity for evaluating the summands for alternating Ramanujan-type series of level 3,and we apply this new identity to prove three conjectured formulas for quadratic-irrational,Ramanujan-type series that had been discovered via numerical experiments with Maple in 2012 by Aldawoud.We also apply our identity to prove a new Ramanujan-type series of level 3 with a quartic convergence rate and quartic coefficients.
基金supported by the Basic Science Center Project of the National Natural Science Foundation of China(42388102)the National Natural Science Foundation of China(42174030)+2 种基金the Special Fund of Hubei Luojia Laboratory(220100020)the Major Science and Technology Program for Hubei Province(2022AAA002)the Fundamental Research Funds for the Central Universities of China(2042022dx0001 and 2042023kfyq01)。
文摘Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050.
基金jointly supported by the International Research Center of Big Data for Sustainable Development Goals(Grant No.CBAS2022GSP02)the National Natural Science Foundation of China(Grant Nos.42072320 and 42372264).
文摘Active landslides pose a significant threat globally,endangering lives and property.Effective monitoring and forecasting of displacements are essential for the timely warnings and mitigation of these events.Interferometric synthetic aperture radar(InSAR)stands out as an efficient and prevalent tool for monitoring landslide deformation and offers new prospects for displacement prediction.However,challenges such as inherent limitation of satellite viewing geometry,long revisit cycles,and limited data volume hinder its application in displacement forecasting,notably for landslides with near-north-south deformation less detectable by InSAR.To address these issues,we propose a novel strategy for predicting three-dimensional(3D)landslide displacement,integrating InSAR and global navigation satellite system(GNSS)measurements with machine learning(ML).This framework first synergizes InSAR line-of-sight(LOS)results with GNSS horizontal data to reconstruct 3D displacement time series.It then employs ML models to capture complex nonlinear relationships between external triggers,landslide evolutionary states,and 3D displacements,thus enabling accurate future deformation predictions.Utilizing four advanced ML algorithms,i.e.random forest(RF),support vector machine(SVM),long short-term memory(LSTM),and gated recurrent unit(GRU),with Bayesian optimization(BO)for hyperparameter tuning,we applied this innovative approach to the north-facing,slow-moving Xinpu landslide in the Three Gorges Reservoir Area(TGRA)of China.Leveraging over 6.5 years of Sentinel-1 satellite data and GNSS measurements,our framework demonstrates satisfactory and robust prediction performance,with an average root mean square deviation(RMSD)of 9.62 mm and a correlation coefficient(CC)of 0.996.This study presents a promising strategy for 3D displacement prediction,illustrating the efficacy of integrating InSAR monitoring with ML forecasting in enhancing landslide early warning capabilities.
基金support from the Fundamental Research Funds for Central Public Welfare Research Institutes(SK202324)the Central Guidance on Local Science and Technology Development Fund of Hebei Province(236Z0104G)+1 种基金the National Natural Science Foundation of China(62476078)the Geological Survey Project of China Geological Survey(G202304-2).
文摘Time series anomaly detection is crucial in finance,healthcare,and industrial monitoring.However,traditional methods often face challenges when handling time series data,such as limited feature extraction capability,poor temporal dependency handling,and suboptimal real-time performance,sometimes even neglecting the temporal relationships between data.To address these issues and improve anomaly detection performance by better capturing temporal dependencies,we propose an unsupervised time series anomaly detection method,VLT-Anomaly.First,we enhance the Variational Autoencoder(VAE)module by redesigning its network structure to better suit anomaly detection through data reconstruction.We introduce hyperparameters to control the weight of the Kullback-Leibler(KL)divergence term in the Evidence Lower Bound(ELBO),thereby improving the encoder module’s decoupling and expressive power in the latent space,which yields more effective latent representations of the data.Next,we incorporate transformer and Long Short-Term Memory(LSTM)modules to estimate the long-term dependencies of the latent representations,capturing both forward and backward temporal relationships and performing time series forecasting.Finally,we compute the reconstruction error by averaging the predicted results and decoder reconstruction and detect anomalies through grid search for optimal threshold values.Experimental results demonstrate that the proposed method performs superior anomaly detection on multiple public time series datasets,effectively extracting complex time-related features and enabling efficient computation and real-time anomaly detection.It improves detection accuracy and robustness while reducing false positives and false negatives.
文摘Time series forecasting is important in the fields of finance,energy,and meteorology,but traditional methods often fail to cope with the complex nonlinear and nonstationary processes of real data.In this paper,we propose the FractalNet-LSTM model,which combines fractal convolutional units with recurrent long short-term memory(LSTM)layers to model time series efficiently.To test the effectiveness of the model,data with complex structures and patterns,in particular,with seasonal and cyclical effects,were used.To better demonstrate the obtained results and the formed conclusions,the model performance was shown on the datasets of electricity consumption,sunspot activity,and Spotify stock price.The result showed that the proposed model outperforms traditional approaches at medium forecasting horizons and demonstrates high accuracy for data with long-term and cyclical dependencies.However,for financial data with high volatility,the model’s efficiency decreases at long forecasting horizons,indicating the need for further adaptation.The findings suggest further adaptation.The findings suggest that integrating fractal properties into neural network architecture improves the accuracy of time series forecasting and can be useful for developing more accurate and reliable forecasting systems in various industries.
基金funded by Natural Science Foundation of Heilongjiang Province,grant number LH2023F020.
文摘Deep learning(DL)has revolutionized time series forecasting(TSF),surpassing traditional statistical methods(e.g.,ARIMA)and machine learning techniques in modeling complex nonlinear dynamics and long-term dependencies prevalent in real-world temporal data.This comprehensive survey reviews state-of-the-art DL architectures forTSF,focusing on four core paradigms:(1)ConvolutionalNeuralNetworks(CNNs),adept at extracting localized temporal features;(2)Recurrent Neural Networks(RNNs)and their advanced variants(LSTM,GRU),designed for sequential dependency modeling;(3)Graph Neural Networks(GNNs),specialized for forecasting structured relational data with spatial-temporal dependencies;and(4)Transformer-based models,leveraging self-attention mechanisms to capture global temporal patterns efficiently.We provide a rigorous analysis of the theoretical underpinnings,recent algorithmic advancements(e.g.,TCNs,attention mechanisms,hybrid architectures),and practical applications of each framework,supported by extensive benchmark datasets(e.g.,ETT,traffic flow,financial indicators)and standardized evaluation metrics(MAE,MSE,RMSE).Critical challenges,including handling irregular sampling intervals,integrating domain knowledge for robustness,and managing computational complexity,are thoroughly discussed.Emerging research directions highlighted include diffusion models for uncertainty quantification,hybrid pipelines combining classical statistical and DL techniques for enhanced interpretability,quantile regression with Transformers for riskaware forecasting,and optimizations for real-time deployment.This work serves as an essential reference,consolidating methodological innovations,empirical resources,and future trends to bridge the gap between theoretical research and practical implementation needs for researchers and practitioners in the field.
基金Supported by the National Natural Science Foundation of China(Grant No.12371004)。
文摘We evaluate some series with summands involving a single binomial coefficient(^6k 3k).For example,we prove that■Motivated by Galois theory,we introduce the so-called Duality Principle for irrational series of Ramanujan’s type or Zeilberger’s type,and apply it to find 26 new irrational series identities.For example,we conjecture that■where ■for any integer d≡0,1 (mod 4) with (d/k) the Kronecker symbol.
基金supported by National Natural Science Foundation of China (No.11275136)。
文摘The discharge and plasma characteristics of Ag magnetron sputtering discharge operated near the electron series resonance(ESR)oscillation,which was excited using the driving frequency of 27.12 MHz,was investigated.The imaginary part of impedance was found to undergo a transition from capacitive to inductive on varying radio-frequency(RF)power,and the conditions for the ESR excitation were satisfied.The current–voltage(I–V)characteristic of discharge showed that the lower discharge voltage with higher current was an important feature of RF magnetron sputtering operated near the ESR oscillation,which was caused by the small impedance Z originated from the mutual compensation between the sheath capacitive reactance and the plasma inductive reactance.The higher electron temperature,ion flux density and ion energy as well as the moderate electron density were obtained.The interaction of higher energy ions on substrate surface improved the crystallographic quality of Ag films.Therefore,the 27.12 MHz magnetron sputtering operated near the ESR oscillation has better deposition characteristics than that of commercial 13.56 MHz RF magnetron sputtering.
基金supported by the National Natural Science Foundation(62202118)Guizhou Province Major Project(Qiankehe Major Project[2024]014)+3 种基金Science and Scientific and Technological Research Projects from Guizhou Education Department(Qianiao ji[2023]003)Hundred-level Innovative Talent Project of Guizhou Provincial Science and Technology Department(Qiankehe Platform Talent-GCC[2023]018)Guizhou Province Major Project(Qiankehe Major Project[2024]003)Foundation of Chongqing Key Laboratory of Public Big Data Security Technology(CQKL-QJ202300001).
文摘Anomaly detection(AD)in time series data is widely applied across various industries for monitoring and security applications,emerging as a key research focus within the field of deep learning.While many methods based on different normality assumptions performwell in specific scenarios,they often neglected the overall normality issue.Some feature extraction methods incorporate pre-training processes but they may not be suitable for time series anomaly detection,leading to decreased performance.Additionally,real-world time series samples are rarely free from noise,making them susceptible to outliers,which further impacts detection accuracy.To address these challenges,we propose a novel anomaly detection method called Robust One-Class Classification Detection(ROC).This approach utilizes an autoencoder(AE)to learn features while constraining the context vectors fromthe AE within a sufficiently small hypersphere,akin to One-Class Classification(OC)methods.By simultaneously optimizing two hypothetical objective functions,ROC captures various aspects of normality.We categorize the input raw time series into clean and outlier sequences,reducing the impact of outliers on compressed feature representation.Experimental results on public datasets indicate that our approach outperforms existing baselinemethods and substantially improves model robustness.
文摘BACKGROUND In critical care practice,difficult airway management poses a substantial challenge,necessitating urgent intervention to ensure patient safety and optimize outcomes.Extracorporeal membrane oxygenation(ECMO)is a potential rescue tool in patients with severe airway compromise,although evidence of its efficacy and safety remains limited.AIM To review the local experience of using ECMO support in patients with difficult airway management.METHODS This retrospective case series study includes patients with difficult airway management who required ECMO support at a tertiary hospital in a Middle Eastern country.RESULTS Between 2016 and 2023,a total of 13 patients required ECMO support due to challenging airway patency in the operating room.Indications for ECMO encompassed various diagnoses,including tracheal stenosis,external tracheal compression,and subglottic stenosis.Surgical interventions such as tracheal resection and anastomosis often necessitated ECMO support to maintain adequate oxygenation and hemodynamic stability.The duration of ECMO support ranged from standby mode(ECMO implantation is readily available)to several days,with relatively infrequent complications observed.Despite the challenges encountered,most patients survived hospital discharge,highlighting the effectiveness of ECMO in managing difficult airways.CONCLUSION This study underscores the crucial role of ECMO as a life-saving intervention in selected cases of difficult airway management.Further research is warranted to refine the understanding of optimal management strategies and improve outcomes in this challenging patient population.
基金supported by the National Natural Science Foundation of China(12171373)Chen's work also supported by the Fundamental Research Funds for the Central Universities of China(GK202207018).
文摘In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.
基金supported by the National Key Research and Development Program of China(2022YFB3305900)National Natural Science Foundation of China(62373153,62173147)+1 种基金the Programme of Introducing Talents of Discipline to Universities(the 111 Project)under Grant B17017Fundamental Research Funds for the Central Universities(222202517006)。
文摘Flammable gas leakage in a semi-enclosed scenario can lead to catastrophic consequences,such as vapor cloud explosions.To reduce casualties and environmental damage,predicting the consequences based on the initial concentration time series monitored by sensors is of paramount importance.This paper proposes a consequence prediction model based on deep learning using variable-length concentration time series.Incomplete concentration values are padded and then passed through a masking layer,enabling the network to focus exclusively on valid data.The temporal correlations are extracted using a long short-term memory(LSTM)network,and the final prediction results are obtained by passing these features into a feedforward neural network(FNN).Computational fluid dynamics(CFD)software was used to simulate the leakage of hydrogen-mixed natural gas.Experiments were carried out for nine distinct prediction targets,derived from combinations of the mass and centroid coordinates of vapor clouds formed by various gases.These prediction targets were modeled using both fixed-length and variable-length input sequences.The high accuracy of the experimental results validates the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China(62176109,62476115)the Fundamental Research Funds for the Central Universities(lzujbky-2023-ey07,lzujbky-2023-it14)+1 种基金the Natural Science Foundation of Gansu Province(24JRRA488)the Supercomputing Center of Lanzhou University
文摘As a category of recurrent neural networks,echo state networks(ESNs)have been the topic of in-depth investigations and extensive applications in a diverse array of fields,with spectacular triumphs achieved.Nevertheless,the traditional ESN and the majority of its variants are devised in the light of the second-order statistical information of data(e.g.,variance and covariance),while more information is neglected.In the context of information theoretic learning,correntropy demonstrates the capacity to grab more information from data.Therefore,under the guidelines of the maximum correntropy criterion,this paper proposes a correntropy-based echo state network(CESN)in which the first-order and higher-order information of data is captured,promoting robustness to noise.Furthermore,an incremental learning algorithm for the CESN is presented,which has the expertise to update the CESN when new data arrives,eliminating the need to retrain the network from scratch.Finally,experiments on benchmark problems and comparisons with existing works are provided to verify the effectiveness and superiority of the proposed CESN.
基金supported by Hubei Provincial Department of Education Science and Technology Plan Project(Grant No.B2022165)。
文摘To analyze the complexity of interval-valued time series(ITSs),a novel interval multiscale sample entropy(IMSE)methodology is proposed in this paper.To validate the effectiveness and feasibility of IMSE in characterizing ITS complexity,the method is initially implemented on simulated time series.The experimental results demonstrate that IMSE not only successfully identifies series complexity and long-range autocorrelation patterns but also effectively captures the intrinsic relationships between interval boundaries.Furthermore,the test results show that IMSE can also be applied to measure the complexity of multivariate time series of equal length.Subsequently,IMSE is applied to investigate interval temperature series(2000–2023)from four Chinese cities:Shanghai,Kunming,Chongqing,and Nagqu.The results show that IMSE not only distinctly differentiates temperature patterns across cities but also effectively quantifies complexity and long-term autocorrelation in ITSs.All the results indicate that IMSE is an alternative and effective method for studying the complexity of ITSs.
基金supported by National Science and Technology Major Project(2022ZD0115701)Nanfan Special Project,CAAS(YBXM2305,YBXM2401,YBXM2402,PTXM2402)+1 种基金National Natural Science Foundation of China(42071426,42301427)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences。
文摘Timely identification and forecast of maize tasseling date(TD)are very important for agronomic management,yield prediction,and crop phenotype estimation.Remote sensing-based phenology monitoring has mostly relied on time series spectral index data of the complete growth season.A recent development in maize phenology detection research is to use canopy height(CH)data instead of spectral indices,but its robustness in multiple treatments and stages has not been confirmed.Meanwhile,because data of a complete growth season are needed,the need for timely in-season TD identification remains unmet.This study proposed an approach to timely identify and forecast the maize TD.We obtained RGB and light detection and ranging(Li DAR)data using the unmanned aerial vehicle platform over plots of different maize varieties under multiple treatments.After CH estimation,the feature points(inflection point)from the Logistic curve of the CH time series were extracted as TD.We examined the impact of various independent variables(day of year vs.accumulated growing degree days(AGDD)),sensors(RGB and Li DAR),time series denoise methods,different feature points,and temporal resolution on TD identification.Lastly,we used early CH time series data to predict height growth and further forecast TD.The results showed that using the 99th percentile of plot scale digital surface model and the minimum digital terrain model from Li DAR to estimate maize CH was the most stable across treatments and stages(R~2:0.928 to0.943).For TD identification,the best performance was achieved by using Li DAR data with AGDD as the independent variable,combined with the knee point method,resulting in RMSE of 2.95 d.The high accuracy was maintained at temporal resolutions as coarse as 14 d.TD forecast got more accurate as the CH time series extended.The optimal timing for forecasting TD was when the CH exceeded half of its maximum.Using only Li DAR CH data below 1.6 m and empirical growth rate estimates,the forecasted TD showed an RMSE of 3.90 d.In conclusion,this study exploited the growth characteristics of maize height to provide a practical approach for the timely identification and forecast of maize TD.
基金Funded by the Spanish Government and FEDER funds(AEI/FEDER,UE)under grant PID2021-124502OB-C42(PRESECREL)the predoctoral program“Concepción Arenal del Programa de Personal Investigador en formación Predoctoral”funded by Universidad de Cantabria and Cantabria’s Government(BOC 18-10-2021).
文摘Predictive maintenance often involves imbalanced multivariate time series datasets with scarce failure events,posing challenges for model training due to the high dimensionality of the data and the need for domain-specific preprocessing,which frequently leads to the development of large and complex models.Inspired by the success of Large Language Models(LLMs),transformer-based foundation models have been developed for time series(TSFM).These models have been proven to reconstruct time series in a zero-shot manner,being able to capture different patterns that effectively characterize time series.This paper proposes the use of TSFM to generate embeddings of the input data space,making them more interpretable for machine learning models.To evaluate the effectiveness of our approach,we trained three classical machine learning algorithms and one neural network using the embeddings generated by the TSFM called Moment for predicting the remaining useful life of aircraft engines.We test the models trained with both the full training dataset and only 10%of the training samples.Our results show that training simple models,such as support vector regressors or neural networks,with embeddings generated by Moment not only accelerates the training process but also enhances performance in few-shot learning scenarios,where data is scarce.This suggests a promising alternative to complex deep learning architectures,particularly in industrial contexts with limited labeled data.
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2024ZD0608100)the National Natural Science Foundation of China(62332017,U22A2022)
文摘In high-risk industrial environments like nuclear power plants,precise defect identification and localization are essential for maintaining production stability and safety.However,the complexity of such a harsh environment leads to significant variations in the shape and size of the defects.To address this challenge,we propose the multivariate time series segmentation network(MSSN),which adopts a multiscale convolutional network with multi-stage and depth-separable convolutions for efficient feature extraction through variable-length templates.To tackle the classification difficulty caused by structural signal variance,MSSN employs logarithmic normalization to adjust instance distributions.Furthermore,it integrates classification with smoothing loss functions to accurately identify defect segments amid similar structural and defect signal subsequences.Our algorithm evaluated on both the Mackey-Glass dataset and industrial dataset achieves over 95%localization and demonstrates the capture capability on the synthetic dataset.In a nuclear plant's heat transfer tube dataset,it captures 90%of defect instances with75%middle localization F1 score.