Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present...Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present work is aimed to optimize the surface roughness and material removal rate of electro discharge machining of SiC parameters simultaneously. As the output parameters are conflicting in nature, so there is no single combination of machining parameters, which provides the best machining performance. Artificial neural network (ANN) with back propagation algorithm is used to model the process. A multi-objective optimization method, non-dominating sorting genetic algorithm-II is used to optimize the process. Affects of three important input parameters of process viz., discharge current, pulse on time (Ton), pulse off time (Toff) on electric discharge machining of SiC are considered. Experiments have been conducted over a wide range of considered input parameters for training and verification of the model. Testing results demonstrate that the model is suitable for predicting the response parameters. A pareto-optimal set has been predicted in this work.展开更多
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa...The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines.展开更多
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed...In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.展开更多
Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists...Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists in the power of arm muscles between the dominant and non- dominant sides. The purposes of this study were to determine the effects of exercises strengthening the core and non-dominant arm muscles of elite golf players (handicap 〈 3) on the increase in drive distance, and to present a corresponding training scheme aimed at improving golf performance ability. Methods: Sixty elite golfers were randomized into the control group (CG, n = 20), core exercise group (CEG, n = 20), and group receiving a combination of muscle strengthening exercises of the non-dominant arm and the core (NCEG, n = 20). The 3 groups conducted the corresponding exercises for 8 weeks, after which the changes in drive distances and isokinetic strength were measured. Results: Significant differences in the overall improvement of drive distance were observed among the groups (p 〈 0.001). Enhancement of the drive distance of NCEG was greater than both CG (p 〈 0.001) and CEG (p = 0.001). Except for trunk flexion, all variables of the measurements of isokinetic strength for NCEG also showed the highest values compared to the other groups. Examination of the correlation between drive distance and isokinetic strength revealed significant correlations of all variables except trunk flexion, wrist extension, and elbow extension. Conclusion: The combination of core and non-dominant arm strength exercises can provide a more effective specialized training program than core alone training for golfers to increase their drive distances.展开更多
Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to sol...Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions.展开更多
Aphasic syndromes usually result from injuries to the dominant hemisphere of the brain. Despite the fact that localization of language functions shows little interindividual variability, several brain areas are simult...Aphasic syndromes usually result from injuries to the dominant hemisphere of the brain. Despite the fact that localization of language functions shows little interindividual variability, several brain areas are simultaneously activated when language tasks are undertaken. Mechanisms of language recovery after brain injury to the dominant hemisphere seem to be relatively stereotyped, including activations of perilesional areas in the acute phase and of homologues of language areas in the non-dominant hemisphere in the subacute phase, later returning to dominant hemisphere activation in the chronic phase. Plasticity mechanisms reopen the critical period of language development, more specifically in what leads to disinhibition of the non-dominant hemisphere when brain lesions affect the dominant hemisphere. The non-dominant hemisphere plays an important role during recovery from aphasia, but currently available rehabilitation therapies have shown limited results for efficient language improvement. Large-scale randomized controlled trials that evaluate well-defined interventions in patients with aphasia are needed for stimulation of neuroplasticity mechanisms that enhance the role of the non-dominant hemisphere for language recovery. Ineffective treatment approaches should be replaced by more promising ones and the latter should be evaluated for proper application. The data generated by such studies could substantiate evidence-based rehabilitation strategies for patients with aphasia.展开更多
With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-...With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-use allocation can be regarded as a complex spatial optimization problem that aims to achieve the possible trade-offs among multiple and conflicting objectives.This paper proposes an improved Non-dominated Sorting Biogeography-Based Optimization(NSBBO)algorithm for solving the multi-objective land-use allocation problem,in which maximum accessibility,maximum compactness,and maximum spatial integration were formulated as spatial objectives;and space syntax analysis was used to analyze the potential movement patterns in the new urban planning area of the city of Kigali,Rwanda.Efficient Non-dominated Sorting(ENS)algorithm and crossover operator were integrated into classical NSBBO to improve the quality of non-dominated solutions,and local search ability,and to accelerate the convergence speed of the algorithm.The results showed that the proposed NSBBO exhibited good optimal solutions with a high hypervolume index compared to the classical NSBBO.Furthermore,the proposed algorithm could generate optimal land use scenarios according to the preferred objectives,thus having the potential to support the decision-making of urban planners and stockholders in revising and updating the existing detailed master plan of land use.展开更多
This paper uses the Butterfly Optimization Algorithm(BOA)with dominated sorting and crowding distance mechanisms to solve multi-objective optimization problems.There is also an improvement to the original version of B...This paper uses the Butterfly Optimization Algorithm(BOA)with dominated sorting and crowding distance mechanisms to solve multi-objective optimization problems.There is also an improvement to the original version of BOA to alleviate its drawbacks before extending it into a multi-objective version.Due to better coverage and a well-distributed Pareto front,non-dominant rankings are applied to the modified BOA using the crowding distance strategy.Seven benchmark functions and eight real-world problems have been used to test the performance of multi-objective non-dominated advanced BOA(MONSBOA),including unconstrained,constrained,and real-world design multiple-objective,highly nonlinear constraint problems.Various performance metrics,such as Generational Distance(GD),Inverted Generational Distance(IGD),Maximum Spread(MS),and Spacing(S),have been used for performance comparison.It is demonstrated that the new MONSBOA algorithm is better than the compared algorithms in more than 80%occasions in solving problems with a variety of linear,nonlinear,continuous,and discrete characteristics based on the Pareto front when compared quantitatively.From all the analysis,it may be concluded that the suggested MONSBOA is capable of producing high-quality Pareto fronts with very competitive results with rapid convergence.展开更多
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne...In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature.展开更多
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish...This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises.展开更多
Vehicle routing problem in distribution(VRPD)is a widely used type of vehicle routing problem(VRP),which has been proved as NP-Hard,and it is usually modeled as single objective optimization problem when modeling.For ...Vehicle routing problem in distribution(VRPD)is a widely used type of vehicle routing problem(VRP),which has been proved as NP-Hard,and it is usually modeled as single objective optimization problem when modeling.For multi-objective optimization model,most researches consider two objectives.A multi-objective mathematical model for VRP is proposed,which considers the number of vehicles used,the length of route and the time arrived at each client.Genetic algorithm is one of the most widely used algorithms to solve VRP.As a type of genetic algorithm(GA),non-dominated sorting in genetic algorithm-Ⅱ(NSGA-Ⅱ)also suffers from premature convergence and enclosure competition.In order to avoid these kinds of shortage,a greedy NSGA-Ⅱ(GNSGA-Ⅱ)is proposed for VRP problem.Greedy algorithm is implemented in generating the initial population,cross-over and mutation.All these procedures ensure that NSGA-Ⅱis prevented from premature convergence and refine the performance of NSGA-Ⅱat each step.In the distribution problem of a distribution center in Michigan,US,the GNSGA-Ⅱis compared with NSGA-Ⅱ.As a result,the GNSGA-Ⅱis the most efficient one and can get the most optimized solution to VRP problem.Also,in GNSGA-Ⅱ,premature convergence is better avoided and search efficiency has been improved sharply.展开更多
Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,h...Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,have a minimum possible value and do not exceed the upper limit of a desired range of percentage variation.Also,it checks the feasibility of design outcome in presence of manufacturing tolerances in design variables.For any rolling element bearing,a long life indicates a satisfactory performance.In the present study,the dynamic load carrying capacity C,which relates to fatigue life,has been optimized using the robust design.In roller bearings,boundary dimensions(i.e.,bearing outer diameter,bore diameter and width)are standard.Hence,the performance is mainly affected by the internal dimensions and not the bearing boundary dimensions mentioned formerly.In spite of this,besides internal dimensions and their tolerances,the tolerances in boundary dimensions have also been taken into consideration for the robust optimization.The problem has been solved with the elitist non-dominating sorting genetic algorithm(NSGA-II).Finally,for the visualization and to ensure manufacturability of CRB using obtained values,radial dimensions drawing of one of the optimized CRB has been made.To check the robustness of obtained design after optimization,a sensitivity analysis has also been carried out to find out how much the variation in the objective function will be in case of variation in optimized value of design variables.Optimized bearings have been found to have improved life as compared with standard ones.展开更多
The paper overviews the state-of-art of aircraft powered by hybrid electric propulsion systems.The research status of the design and energy management of hybrid aircraft and hybrid propulsion systems are further revie...The paper overviews the state-of-art of aircraft powered by hybrid electric propulsion systems.The research status of the design and energy management of hybrid aircraft and hybrid propulsion systems are further reviewed.The first contribution of the review is to demonstrate that,in the context of relatively underdeveloped electrical storage technologies,the study of mid-scale hybrid aircraft can contribute the most to both theoretical and practical knowledge.Meanwhile,the profits and potential drawbacks of applying hybrid propulsion to mid-scale hybrid airplanes have not been thoroughly illustrated.Secondly,as summed in the overview of design methodologies,the multi-objective optimization transcends the single-objective one.The potential of the hybrid propulsion system can be thoroughly evaluated in only one optimization run,if several objectives optimized simultaneously.Yet there are few researches covering the conceptual design of hybrid aircraft using multi-objective optimization.The review of the most popular energy management strategies discloses the third research gap—current methodologies favoured in hybrid ground vehicles do not consider the aircraft safety.Additionally,both non-causal and causal energy management are needed for performing a complicated flight mission with several sub-tasks.展开更多
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w...An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.展开更多
Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a se...Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.展开更多
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes...Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.展开更多
Multi-objective land allocation(MOLA)can be regarded as a spatial optimization problem that allocates appropriate use to certain land units subjecting to multiple objectives and constraints.This article develops an im...Multi-objective land allocation(MOLA)can be regarded as a spatial optimization problem that allocates appropriate use to certain land units subjecting to multiple objectives and constraints.This article develops an improved knowledge-informed non-dominated sorting genetic algorithm II(NSGA-II)for solving the MOLA problem by integrating the patch-based,edge growing/decreasing,neighborhood,and constraint steering rules.By applying both the classical and the knowledge-informed NSGA-II to a simulated planning area of 30×30 grid,we find that:when compared to the classical NSGA-II,the knowledge-informed NSGA-II consistently produces solutions much closer to the true Pareto front within shorter computation time without sacrificing the solution diversity;the knowledge-informed NSGA-II is more effective and more efficient in encouraging compact land allocation;the solutions produced by the knowledge-informed have less scattered/isolated land units and provide a good compromise between construction sprawl and conservation land protection.The better performance proves that knowledge-informed NSGA-II is a more reasonable and desirable approach in the planning context.展开更多
A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance ...A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance activities.The non-dominated sorting genetic algorithm 2(NSGA2)is applied to multi-objective optimization,and the optimization result is a set of Pareto solutions.Firstly,multistate failure mode analysis is conducted for the main devices leading to the failure of catenary,and then the reliability and failure mode of the whole catenary system is analyzed.The mathematical relationship between system reliability and maintenance cost is derived considering the existing catenary preventive maintenance mode to improve the reliability of the system.Secondly,an improved NSGA2(INSGA2)is proposed,which strengths population diversity by improving selection operator,and introduces local search strategy to ensure that population distribution is more uniform.The comparison results of the two algorithms before and after improvement on the zero-ductility transition(ZDT)series functions show that the population diversity is better and the solution is more uniform using INSGA2.Finally,the INSGA2 is applied to multi-objective optimization of system reliability and maintenance cost in different maintenance periods.The decision-makers can choose the reasonable solutions as the maintenance plans in the optimization results by weighing the relationship between the system reliability and the maintenance cost.The selected maintenance plans can ensure the lowest maintenance cost while the system reliability is as high as possible.展开更多
文摘Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present work is aimed to optimize the surface roughness and material removal rate of electro discharge machining of SiC parameters simultaneously. As the output parameters are conflicting in nature, so there is no single combination of machining parameters, which provides the best machining performance. Artificial neural network (ANN) with back propagation algorithm is used to model the process. A multi-objective optimization method, non-dominating sorting genetic algorithm-II is used to optimize the process. Affects of three important input parameters of process viz., discharge current, pulse on time (Ton), pulse off time (Toff) on electric discharge machining of SiC are considered. Experiments have been conducted over a wide range of considered input parameters for training and verification of the model. Testing results demonstrate that the model is suitable for predicting the response parameters. A pareto-optimal set has been predicted in this work.
基金Project supported by the National Basic Research Program of China (973 Program) (No. 2007CB714600)
文摘The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines.
基金Foundation item: Projects(61102106, 61102105) supported by the National Natural Science Foundation of China Project(2013M530148) supported by China Postdoctoral Science Foundation Project(HEUCF120806) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.
文摘Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists in the power of arm muscles between the dominant and non- dominant sides. The purposes of this study were to determine the effects of exercises strengthening the core and non-dominant arm muscles of elite golf players (handicap 〈 3) on the increase in drive distance, and to present a corresponding training scheme aimed at improving golf performance ability. Methods: Sixty elite golfers were randomized into the control group (CG, n = 20), core exercise group (CEG, n = 20), and group receiving a combination of muscle strengthening exercises of the non-dominant arm and the core (NCEG, n = 20). The 3 groups conducted the corresponding exercises for 8 weeks, after which the changes in drive distances and isokinetic strength were measured. Results: Significant differences in the overall improvement of drive distance were observed among the groups (p 〈 0.001). Enhancement of the drive distance of NCEG was greater than both CG (p 〈 0.001) and CEG (p = 0.001). Except for trunk flexion, all variables of the measurements of isokinetic strength for NCEG also showed the highest values compared to the other groups. Examination of the correlation between drive distance and isokinetic strength revealed significant correlations of all variables except trunk flexion, wrist extension, and elbow extension. Conclusion: The combination of core and non-dominant arm strength exercises can provide a more effective specialized training program than core alone training for golfers to increase their drive distances.
基金the Natural Science Key Foundation of Heilongjiang Province of China (No. ZJG0503) China-UK Sci-ence Network from Royal Society UK
文摘Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions.
基金supported by a grant from CAPES-Coordenao de Aperfeioamento de Pessoal de Nível Superior(Brazil)
文摘Aphasic syndromes usually result from injuries to the dominant hemisphere of the brain. Despite the fact that localization of language functions shows little interindividual variability, several brain areas are simultaneously activated when language tasks are undertaken. Mechanisms of language recovery after brain injury to the dominant hemisphere seem to be relatively stereotyped, including activations of perilesional areas in the acute phase and of homologues of language areas in the non-dominant hemisphere in the subacute phase, later returning to dominant hemisphere activation in the chronic phase. Plasticity mechanisms reopen the critical period of language development, more specifically in what leads to disinhibition of the non-dominant hemisphere when brain lesions affect the dominant hemisphere. The non-dominant hemisphere plays an important role during recovery from aphasia, but currently available rehabilitation therapies have shown limited results for efficient language improvement. Large-scale randomized controlled trials that evaluate well-defined interventions in patients with aphasia are needed for stimulation of neuroplasticity mechanisms that enhance the role of the non-dominant hemisphere for language recovery. Ineffective treatment approaches should be replaced by more promising ones and the latter should be evaluated for proper application. The data generated by such studies could substantiate evidence-based rehabilitation strategies for patients with aphasia.
基金supported by the Styrelsen för Internationellt Utvecklingssamarbete.
文摘With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-use allocation can be regarded as a complex spatial optimization problem that aims to achieve the possible trade-offs among multiple and conflicting objectives.This paper proposes an improved Non-dominated Sorting Biogeography-Based Optimization(NSBBO)algorithm for solving the multi-objective land-use allocation problem,in which maximum accessibility,maximum compactness,and maximum spatial integration were formulated as spatial objectives;and space syntax analysis was used to analyze the potential movement patterns in the new urban planning area of the city of Kigali,Rwanda.Efficient Non-dominated Sorting(ENS)algorithm and crossover operator were integrated into classical NSBBO to improve the quality of non-dominated solutions,and local search ability,and to accelerate the convergence speed of the algorithm.The results showed that the proposed NSBBO exhibited good optimal solutions with a high hypervolume index compared to the classical NSBBO.Furthermore,the proposed algorithm could generate optimal land use scenarios according to the preferred objectives,thus having the potential to support the decision-making of urban planners and stockholders in revising and updating the existing detailed master plan of land use.
文摘This paper uses the Butterfly Optimization Algorithm(BOA)with dominated sorting and crowding distance mechanisms to solve multi-objective optimization problems.There is also an improvement to the original version of BOA to alleviate its drawbacks before extending it into a multi-objective version.Due to better coverage and a well-distributed Pareto front,non-dominant rankings are applied to the modified BOA using the crowding distance strategy.Seven benchmark functions and eight real-world problems have been used to test the performance of multi-objective non-dominated advanced BOA(MONSBOA),including unconstrained,constrained,and real-world design multiple-objective,highly nonlinear constraint problems.Various performance metrics,such as Generational Distance(GD),Inverted Generational Distance(IGD),Maximum Spread(MS),and Spacing(S),have been used for performance comparison.It is demonstrated that the new MONSBOA algorithm is better than the compared algorithms in more than 80%occasions in solving problems with a variety of linear,nonlinear,continuous,and discrete characteristics based on the Pareto front when compared quantitatively.From all the analysis,it may be concluded that the suggested MONSBOA is capable of producing high-quality Pareto fronts with very competitive results with rapid convergence.
基金This research was supported by the Researchers Supporting Program(TUMAProject-2021-27)Almaarefa University,Riyadh,Saudi Arabia.
文摘In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature.
基金Supported by the Natural Science Foundation of Zhejiang Province(No.LQ22F030015).
文摘This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises.
基金supported by National Natural Science Foundation of China(No.60474059)Hi-tech Research and Development Program of China(863 Program,No.2006AA04Z160).
文摘Vehicle routing problem in distribution(VRPD)is a widely used type of vehicle routing problem(VRP),which has been proved as NP-Hard,and it is usually modeled as single objective optimization problem when modeling.For multi-objective optimization model,most researches consider two objectives.A multi-objective mathematical model for VRP is proposed,which considers the number of vehicles used,the length of route and the time arrived at each client.Genetic algorithm is one of the most widely used algorithms to solve VRP.As a type of genetic algorithm(GA),non-dominated sorting in genetic algorithm-Ⅱ(NSGA-Ⅱ)also suffers from premature convergence and enclosure competition.In order to avoid these kinds of shortage,a greedy NSGA-Ⅱ(GNSGA-Ⅱ)is proposed for VRP problem.Greedy algorithm is implemented in generating the initial population,cross-over and mutation.All these procedures ensure that NSGA-Ⅱis prevented from premature convergence and refine the performance of NSGA-Ⅱat each step.In the distribution problem of a distribution center in Michigan,US,the GNSGA-Ⅱis compared with NSGA-Ⅱ.As a result,the GNSGA-Ⅱis the most efficient one and can get the most optimized solution to VRP problem.Also,in GNSGA-Ⅱ,premature convergence is better avoided and search efficiency has been improved sharply.
文摘Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,have a minimum possible value and do not exceed the upper limit of a desired range of percentage variation.Also,it checks the feasibility of design outcome in presence of manufacturing tolerances in design variables.For any rolling element bearing,a long life indicates a satisfactory performance.In the present study,the dynamic load carrying capacity C,which relates to fatigue life,has been optimized using the robust design.In roller bearings,boundary dimensions(i.e.,bearing outer diameter,bore diameter and width)are standard.Hence,the performance is mainly affected by the internal dimensions and not the bearing boundary dimensions mentioned formerly.In spite of this,besides internal dimensions and their tolerances,the tolerances in boundary dimensions have also been taken into consideration for the robust optimization.The problem has been solved with the elitist non-dominating sorting genetic algorithm(NSGA-II).Finally,for the visualization and to ensure manufacturability of CRB using obtained values,radial dimensions drawing of one of the optimized CRB has been made.To check the robustness of obtained design after optimization,a sensitivity analysis has also been carried out to find out how much the variation in the objective function will be in case of variation in optimized value of design variables.Optimized bearings have been found to have improved life as compared with standard ones.
基金the Innovate UK(No.102361)partly the Zhejiang Lab’s project“From Hybrid e VTOL Air Vehicle to Urban Air Mobility”(No.2018DF0ZX01),which aims to build the autonomous manned hybrid e VTOL aircraft for the future urban air transportpartly sponsored by Leading Innovation and Entrepreneurship Team of Zhejiang Province of China(No.2018R01006)。
文摘The paper overviews the state-of-art of aircraft powered by hybrid electric propulsion systems.The research status of the design and energy management of hybrid aircraft and hybrid propulsion systems are further reviewed.The first contribution of the review is to demonstrate that,in the context of relatively underdeveloped electrical storage technologies,the study of mid-scale hybrid aircraft can contribute the most to both theoretical and practical knowledge.Meanwhile,the profits and potential drawbacks of applying hybrid propulsion to mid-scale hybrid airplanes have not been thoroughly illustrated.Secondly,as summed in the overview of design methodologies,the multi-objective optimization transcends the single-objective one.The potential of the hybrid propulsion system can be thoroughly evaluated in only one optimization run,if several objectives optimized simultaneously.Yet there are few researches covering the conceptual design of hybrid aircraft using multi-objective optimization.The review of the most popular energy management strategies discloses the third research gap—current methodologies favoured in hybrid ground vehicles do not consider the aircraft safety.Additionally,both non-causal and causal energy management are needed for performing a complicated flight mission with several sub-tasks.
基金supported by the National Natural Science Foundation of China (60632050)National Basic Research Program of Jiangsu Province University (08KJB520003)
文摘An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.
基金National Key Technologies Research and Development Program in the 10th Five-year Phan(No.2001BA204B01)National Outstanding Youth Science Foundation of China(No.60025308)
文摘Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.
文摘Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.
文摘Multi-objective land allocation(MOLA)can be regarded as a spatial optimization problem that allocates appropriate use to certain land units subjecting to multiple objectives and constraints.This article develops an improved knowledge-informed non-dominated sorting genetic algorithm II(NSGA-II)for solving the MOLA problem by integrating the patch-based,edge growing/decreasing,neighborhood,and constraint steering rules.By applying both the classical and the knowledge-informed NSGA-II to a simulated planning area of 30×30 grid,we find that:when compared to the classical NSGA-II,the knowledge-informed NSGA-II consistently produces solutions much closer to the true Pareto front within shorter computation time without sacrificing the solution diversity;the knowledge-informed NSGA-II is more effective and more efficient in encouraging compact land allocation;the solutions produced by the knowledge-informed have less scattered/isolated land units and provide a good compromise between construction sprawl and conservation land protection.The better performance proves that knowledge-informed NSGA-II is a more reasonable and desirable approach in the planning context.
文摘A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance activities.The non-dominated sorting genetic algorithm 2(NSGA2)is applied to multi-objective optimization,and the optimization result is a set of Pareto solutions.Firstly,multistate failure mode analysis is conducted for the main devices leading to the failure of catenary,and then the reliability and failure mode of the whole catenary system is analyzed.The mathematical relationship between system reliability and maintenance cost is derived considering the existing catenary preventive maintenance mode to improve the reliability of the system.Secondly,an improved NSGA2(INSGA2)is proposed,which strengths population diversity by improving selection operator,and introduces local search strategy to ensure that population distribution is more uniform.The comparison results of the two algorithms before and after improvement on the zero-ductility transition(ZDT)series functions show that the population diversity is better and the solution is more uniform using INSGA2.Finally,the INSGA2 is applied to multi-objective optimization of system reliability and maintenance cost in different maintenance periods.The decision-makers can choose the reasonable solutions as the maintenance plans in the optimization results by weighing the relationship between the system reliability and the maintenance cost.The selected maintenance plans can ensure the lowest maintenance cost while the system reliability is as high as possible.