期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Modeling and Optimization of Electrical Discharge Machining of SiC Parameters, Using Neural Network and Non-Dominating Sorting Genetic Algorithm (NSGA II)
1
作者 Ramezan Ali MahdaviNejad 《Materials Sciences and Applications》 2011年第6期669-675,共7页
Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present... Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present work is aimed to optimize the surface roughness and material removal rate of electro discharge machining of SiC parameters simultaneously. As the output parameters are conflicting in nature, so there is no single combination of machining parameters, which provides the best machining performance. Artificial neural network (ANN) with back propagation algorithm is used to model the process. A multi-objective optimization method, non-dominating sorting genetic algorithm-II is used to optimize the process. Affects of three important input parameters of process viz., discharge current, pulse on time (Ton), pulse off time (Toff) on electric discharge machining of SiC are considered. Experiments have been conducted over a wide range of considered input parameters for training and verification of the model. Testing results demonstrate that the model is suitable for predicting the response parameters. A pareto-optimal set has been predicted in this work. 展开更多
关键词 Electro DISCHARGE MACHINING non-dominating SORTING Algorithm Neural Network REFEL SIC
暂未订购
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:30
2
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
在线阅读 下载PDF
Non-dominated sorting quantum particle swarm optimization and its application in cognitive radio spectrum allocation 被引量:4
3
作者 GAO Hong-yuan CAO Jin-long 《Journal of Central South University》 SCIE EI CAS 2013年第7期1878-1888,共11页
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed... In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO. 展开更多
关键词 cognitive radio spectrum allocation multi-objective optimization non-dominated sorting quantum particle swarmoptimization benchmark function
在线阅读 下载PDF
Effects of core and non-dominant arm strength training on drive distance in elite golfers 被引量:4
4
作者 Dong Jun Sung Seung Jun Park +2 位作者 Sojung Kim Moon Seok Kwon Young-Tae Lim 《Journal of Sport and Health Science》 SCIE 2016年第2期219-225,共7页
Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists... Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists in the power of arm muscles between the dominant and non- dominant sides. The purposes of this study were to determine the effects of exercises strengthening the core and non-dominant arm muscles of elite golf players (handicap 〈 3) on the increase in drive distance, and to present a corresponding training scheme aimed at improving golf performance ability. Methods: Sixty elite golfers were randomized into the control group (CG, n = 20), core exercise group (CEG, n = 20), and group receiving a combination of muscle strengthening exercises of the non-dominant arm and the core (NCEG, n = 20). The 3 groups conducted the corresponding exercises for 8 weeks, after which the changes in drive distances and isokinetic strength were measured. Results: Significant differences in the overall improvement of drive distance were observed among the groups (p 〈 0.001). Enhancement of the drive distance of NCEG was greater than both CG (p 〈 0.001) and CEG (p = 0.001). Except for trunk flexion, all variables of the measurements of isokinetic strength for NCEG also showed the highest values compared to the other groups. Examination of the correlation between drive distance and isokinetic strength revealed significant correlations of all variables except trunk flexion, wrist extension, and elbow extension. Conclusion: The combination of core and non-dominant arm strength exercises can provide a more effective specialized training program than core alone training for golfers to increase their drive distances. 展开更多
关键词 Core exercise Drive distance Elite golfer Isokinetic strength non-dominant arm strength exercise
在线阅读 下载PDF
Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-II 被引量:3
5
作者 Xi JIN Jie ZHANG +1 位作者 Jin-liang GAO Wen-yan WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期391-400,共10页
Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to sol... Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions. 展开更多
关键词 Water supply system Water supply network Optimal rehabilitation MULTI-OBJECTIVE non-dominated sorting Ge-netic Algorithm (NSGA)
在线阅读 下载PDF
Communicating with the non-dominant hemisphere:Implications for neurological rehabilitation 被引量:2
6
作者 Fabricio Ferreira de Oliveira Sheilla de Medeiros Correia Marin Paulo Henrique Ferreira Bertolucci 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第13期1236-1246,共11页
Aphasic syndromes usually result from injuries to the dominant hemisphere of the brain. Despite the fact that localization of language functions shows little interindividual variability, several brain areas are simult... Aphasic syndromes usually result from injuries to the dominant hemisphere of the brain. Despite the fact that localization of language functions shows little interindividual variability, several brain areas are simultaneously activated when language tasks are undertaken. Mechanisms of language recovery after brain injury to the dominant hemisphere seem to be relatively stereotyped, including activations of perilesional areas in the acute phase and of homologues of language areas in the non-dominant hemisphere in the subacute phase, later returning to dominant hemisphere activation in the chronic phase. Plasticity mechanisms reopen the critical period of language development, more specifically in what leads to disinhibition of the non-dominant hemisphere when brain lesions affect the dominant hemisphere. The non-dominant hemisphere plays an important role during recovery from aphasia, but currently available rehabilitation therapies have shown limited results for efficient language improvement. Large-scale randomized controlled trials that evaluate well-defined interventions in patients with aphasia are needed for stimulation of neuroplasticity mechanisms that enhance the role of the non-dominant hemisphere for language recovery. Ineffective treatment approaches should be replaced by more promising ones and the latter should be evaluated for proper application. The data generated by such studies could substantiate evidence-based rehabilitation strategies for patients with aphasia. 展开更多
关键词 neural regeneration reviews linguistics APHASIA language speech non-dominant hemisphere disability evaluation prognosis CEREBRUM function grants-supported paper neuroregeneration
暂未订购
An improved non-dominated sorting biogeography-based optimization algorithm for multi-objective land-use allocation:a case study in Kigali-Rwanda 被引量:1
7
作者 Olive Niyomubyeyi Mozafar Veysipanah +2 位作者 Sam Sarwat Petter Pilesjö Ali Mansourian 《Geo-Spatial Information Science》 CSCD 2024年第4期968-982,共15页
With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-... With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-use allocation can be regarded as a complex spatial optimization problem that aims to achieve the possible trade-offs among multiple and conflicting objectives.This paper proposes an improved Non-dominated Sorting Biogeography-Based Optimization(NSBBO)algorithm for solving the multi-objective land-use allocation problem,in which maximum accessibility,maximum compactness,and maximum spatial integration were formulated as spatial objectives;and space syntax analysis was used to analyze the potential movement patterns in the new urban planning area of the city of Kigali,Rwanda.Efficient Non-dominated Sorting(ENS)algorithm and crossover operator were integrated into classical NSBBO to improve the quality of non-dominated solutions,and local search ability,and to accelerate the convergence speed of the algorithm.The results showed that the proposed NSBBO exhibited good optimal solutions with a high hypervolume index compared to the classical NSBBO.Furthermore,the proposed algorithm could generate optimal land use scenarios according to the preferred objectives,thus having the potential to support the decision-making of urban planners and stockholders in revising and updating the existing detailed master plan of land use. 展开更多
关键词 Multi-objective land-use allocation spatial optimization sustainable urban planning non-dominated Sorting Biogeography-Based Optimization(NSBBO)algorithm
原文传递
Non-dominated Sorting Advanced Butterfly Optimization Algorithm for Multi-objective Problems
8
作者 Sushmita Sharma Nima Khodadadi +2 位作者 Apu Kumar Saha Farhad Soleimanian Gharehchopogh Seyedali Mirjalili 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第2期819-843,共25页
This paper uses the Butterfly Optimization Algorithm(BOA)with dominated sorting and crowding distance mechanisms to solve multi-objective optimization problems.There is also an improvement to the original version of B... This paper uses the Butterfly Optimization Algorithm(BOA)with dominated sorting and crowding distance mechanisms to solve multi-objective optimization problems.There is also an improvement to the original version of BOA to alleviate its drawbacks before extending it into a multi-objective version.Due to better coverage and a well-distributed Pareto front,non-dominant rankings are applied to the modified BOA using the crowding distance strategy.Seven benchmark functions and eight real-world problems have been used to test the performance of multi-objective non-dominated advanced BOA(MONSBOA),including unconstrained,constrained,and real-world design multiple-objective,highly nonlinear constraint problems.Various performance metrics,such as Generational Distance(GD),Inverted Generational Distance(IGD),Maximum Spread(MS),and Spacing(S),have been used for performance comparison.It is demonstrated that the new MONSBOA algorithm is better than the compared algorithms in more than 80%occasions in solving problems with a variety of linear,nonlinear,continuous,and discrete characteristics based on the Pareto front when compared quantitatively.From all the analysis,it may be concluded that the suggested MONSBOA is capable of producing high-quality Pareto fronts with very competitive results with rapid convergence. 展开更多
关键词 Multi-objective problems Butterfly optimization algorithm non-dominated sorting Crowding distance
在线阅读 下载PDF
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
9
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
在线阅读 下载PDF
A decoupled multi-objective optimization algorithm for cut order planning of multi-color garment
10
作者 DONG Hui LYU Jinyang +3 位作者 LIN Wenjie WU Xiang WU Mincheng HUANG Guangpu 《High Technology Letters》 2025年第1期53-62,共10页
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish... This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises. 展开更多
关键词 multi-objective optimization non-dominated sorting in genetic algorithmsⅡ(NSGAII) cut order planning(COP) multi-color garment linear programming decoupling strategy
在线阅读 下载PDF
考虑交货期的双资源柔性作业车间节能调度 被引量:11
11
作者 张洪亮 徐静茹 +1 位作者 谈波 徐公杰 《系统仿真学报》 CAS CSCD 北大核心 2023年第4期734-746,共13页
为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sor... 为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sorting genetic algorithmⅡ,INSGA-Ⅱ)进行求解。针对所优化的目标,设计了一种三阶段解码方法以获得高质量的可行解;利用动态自适应交叉和变异算子以获得更多优良个体;改进拥挤距离以获得收敛性和分布性更优的种群。将INSGA-Ⅱ与多种多目标优化算法进行对比分析,实验结果表明所提算法可行且有效。 展开更多
关键词 双资源约束 柔性作业车间 提前/拖期惩罚 能耗 INSGA-Ⅱ(improved non-dominated sorting genetic algorithmⅡ)
原文传递
GREEDY NON-DOMINATED SORTING IN GENETIC ALGORITHM-ⅡFOR VEHICLE ROUTING PROBLEM IN DISTRIBUTION
12
作者 WEI Tian FAN Wenhui XU Huayu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期18-24,共7页
Vehicle routing problem in distribution(VRPD)is a widely used type of vehicle routing problem(VRP),which has been proved as NP-Hard,and it is usually modeled as single objective optimization problem when modeling.For ... Vehicle routing problem in distribution(VRPD)is a widely used type of vehicle routing problem(VRP),which has been proved as NP-Hard,and it is usually modeled as single objective optimization problem when modeling.For multi-objective optimization model,most researches consider two objectives.A multi-objective mathematical model for VRP is proposed,which considers the number of vehicles used,the length of route and the time arrived at each client.Genetic algorithm is one of the most widely used algorithms to solve VRP.As a type of genetic algorithm(GA),non-dominated sorting in genetic algorithm-Ⅱ(NSGA-Ⅱ)also suffers from premature convergence and enclosure competition.In order to avoid these kinds of shortage,a greedy NSGA-Ⅱ(GNSGA-Ⅱ)is proposed for VRP problem.Greedy algorithm is implemented in generating the initial population,cross-over and mutation.All these procedures ensure that NSGA-Ⅱis prevented from premature convergence and refine the performance of NSGA-Ⅱat each step.In the distribution problem of a distribution center in Michigan,US,the GNSGA-Ⅱis compared with NSGA-Ⅱ.As a result,the GNSGA-Ⅱis the most efficient one and can get the most optimized solution to VRP problem.Also,in GNSGA-Ⅱ,premature convergence is better avoided and search efficiency has been improved sharply. 展开更多
关键词 Greedy non-dominated sorting in genetic algorithm-Ⅱ(GNSGA-Ⅱ) Vehicle routing problem(VRP) Multi-objective optimization
在线阅读 下载PDF
基于混合遗传蚁群算法的多目标FJSP问题研究 被引量:5
13
作者 赵小惠 卫艳芳 +3 位作者 赵雯 胡胜 王凯峰 倪奕棋 《组合机床与自动化加工技术》 北大核心 2023年第1期188-192,共5页
针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初... 针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初始信息素分布;其次,根据提出的自适应伪随机比例规则和改进的信息素更新规则来优化蚂蚁的遍历过程;最后,通过邻域搜索,扩大蚂蚁的搜索空间,从而提高解集的多样性。通过Kacem和BRdata算例进行实验验证,证明混合遗传蚁群算法具有更高的求解效率和更好解集多样性。 展开更多
关键词 柔性作业车间调度 多目标优化 NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ) 蚁群算法
在线阅读 下载PDF
Robust Optimization Method of Cylindrical Roller Bearing by Maximizing Dynamic Capacity Using Evolutionary Algorithms
14
作者 Kumar Gaurav Rajiv Tiwari Twinkle Mandawat 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第5期20-40,共21页
Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,h... Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,have a minimum possible value and do not exceed the upper limit of a desired range of percentage variation.Also,it checks the feasibility of design outcome in presence of manufacturing tolerances in design variables.For any rolling element bearing,a long life indicates a satisfactory performance.In the present study,the dynamic load carrying capacity C,which relates to fatigue life,has been optimized using the robust design.In roller bearings,boundary dimensions(i.e.,bearing outer diameter,bore diameter and width)are standard.Hence,the performance is mainly affected by the internal dimensions and not the bearing boundary dimensions mentioned formerly.In spite of this,besides internal dimensions and their tolerances,the tolerances in boundary dimensions have also been taken into consideration for the robust optimization.The problem has been solved with the elitist non-dominating sorting genetic algorithm(NSGA-II).Finally,for the visualization and to ensure manufacturability of CRB using obtained values,radial dimensions drawing of one of the optimized CRB has been made.To check the robustness of obtained design after optimization,a sensitivity analysis has also been carried out to find out how much the variation in the objective function will be in case of variation in optimized value of design variables.Optimized bearings have been found to have improved life as compared with standard ones. 展开更多
关键词 cylindrical roller bearing OPTIMIZATION robust design elitist non-dominating sorting genetic algorithm(NSGA-II) fatigue life dynamic load carrying capacity
在线阅读 下载PDF
Review of hybrid electric powered aircraft,its conceptual design and energy management methodologies 被引量:12
15
作者 Ye XIE Al SAVVARISAL +2 位作者 Antonios TSOURDOS Dan ZHANG Jason GU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期432-450,共19页
The paper overviews the state-of-art of aircraft powered by hybrid electric propulsion systems.The research status of the design and energy management of hybrid aircraft and hybrid propulsion systems are further revie... The paper overviews the state-of-art of aircraft powered by hybrid electric propulsion systems.The research status of the design and energy management of hybrid aircraft and hybrid propulsion systems are further reviewed.The first contribution of the review is to demonstrate that,in the context of relatively underdeveloped electrical storage technologies,the study of mid-scale hybrid aircraft can contribute the most to both theoretical and practical knowledge.Meanwhile,the profits and potential drawbacks of applying hybrid propulsion to mid-scale hybrid airplanes have not been thoroughly illustrated.Secondly,as summed in the overview of design methodologies,the multi-objective optimization transcends the single-objective one.The potential of the hybrid propulsion system can be thoroughly evaluated in only one optimization run,if several objectives optimized simultaneously.Yet there are few researches covering the conceptual design of hybrid aircraft using multi-objective optimization.The review of the most popular energy management strategies discloses the third research gap—current methodologies favoured in hybrid ground vehicles do not consider the aircraft safety.Additionally,both non-causal and causal energy management are needed for performing a complicated flight mission with several sub-tasks. 展开更多
关键词 AIRCRAFT Convex optimization Energy management Fuzzy logic control Hybrid electric propulsion system non-dominated sorting genetic algorithm SIZING
原文传递
Improved genetic algorithm for nonlinear programming problems 被引量:8
16
作者 Kezong Tang Jingyu Yang +1 位作者 Haiyan Chen Shang Gao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期540-546,共7页
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w... An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms. 展开更多
关键词 genetic algorithm(GA) nonlinear programming problem constraint handling non-dominated solution optimization problem.
在线阅读 下载PDF
Multi-objective Optimization of Industrial Purified Terephthalic Acid Oxidation Process 被引量:11
17
作者 牟盛静 苏宏业 +1 位作者 古勇 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第5期536-541,共6页
Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a se... Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process. 展开更多
关键词 multi-objective optimization purified terephthalic acid oxidation process non-dominated sorting genetic algorithm
在线阅读 下载PDF
Multi-objective Evolutionary Algorithms for MILP and MINLP in Process Synthesis 被引量:7
18
作者 石磊 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期173-178,共6页
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes... Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis. 展开更多
关键词 multi-objective programming multi-objective evolutionary algorithm steady-state non-dominated sorting genetic algorithm process synthesis
在线阅读 下载PDF
An improved knowledge-informed NSGA-II for multi-objective land allocation (MOLA) 被引量:10
19
作者 Mingjie Song Dongmei Chen 《Geo-Spatial Information Science》 SCIE CSCD 2018年第4期273-287,共15页
Multi-objective land allocation(MOLA)can be regarded as a spatial optimization problem that allocates appropriate use to certain land units subjecting to multiple objectives and constraints.This article develops an im... Multi-objective land allocation(MOLA)can be regarded as a spatial optimization problem that allocates appropriate use to certain land units subjecting to multiple objectives and constraints.This article develops an improved knowledge-informed non-dominated sorting genetic algorithm II(NSGA-II)for solving the MOLA problem by integrating the patch-based,edge growing/decreasing,neighborhood,and constraint steering rules.By applying both the classical and the knowledge-informed NSGA-II to a simulated planning area of 30×30 grid,we find that:when compared to the classical NSGA-II,the knowledge-informed NSGA-II consistently produces solutions much closer to the true Pareto front within shorter computation time without sacrificing the solution diversity;the knowledge-informed NSGA-II is more effective and more efficient in encouraging compact land allocation;the solutions produced by the knowledge-informed have less scattered/isolated land units and provide a good compromise between construction sprawl and conservation land protection.The better performance proves that knowledge-informed NSGA-II is a more reasonable and desirable approach in the planning context. 展开更多
关键词 Multi-objective land allocation(MOLA) non-dominated sorting genetic algorithm II(NSGA-II) knowledge-informed rules
原文传递
Optimization of maintenance strategy for high-speed railwaycatenary system based on multistate model 被引量:8
20
作者 YU Guo-liang SU Hong-sheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第4期348-360,共13页
A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance ... A multi-objective optimization model considering both reliability and maintenance cost is proposed to solve the contradiction between reliability and maintenance cost in high-speed railway catenary system maintenance activities.The non-dominated sorting genetic algorithm 2(NSGA2)is applied to multi-objective optimization,and the optimization result is a set of Pareto solutions.Firstly,multistate failure mode analysis is conducted for the main devices leading to the failure of catenary,and then the reliability and failure mode of the whole catenary system is analyzed.The mathematical relationship between system reliability and maintenance cost is derived considering the existing catenary preventive maintenance mode to improve the reliability of the system.Secondly,an improved NSGA2(INSGA2)is proposed,which strengths population diversity by improving selection operator,and introduces local search strategy to ensure that population distribution is more uniform.The comparison results of the two algorithms before and after improvement on the zero-ductility transition(ZDT)series functions show that the population diversity is better and the solution is more uniform using INSGA2.Finally,the INSGA2 is applied to multi-objective optimization of system reliability and maintenance cost in different maintenance periods.The decision-makers can choose the reasonable solutions as the maintenance plans in the optimization results by weighing the relationship between the system reliability and the maintenance cost.The selected maintenance plans can ensure the lowest maintenance cost while the system reliability is as high as possible. 展开更多
关键词 high-speed railway CATENARY multi-objective optimization non-dominated sorting genetic algorithm 2(NSGA2) selection operator local search Pareto solutions
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部