期刊文献+
共找到11,897篇文章
< 1 2 250 >
每页显示 20 50 100
Conformally symmetric wormhole solutions supported by non-commutative geometry in f(Q,T)gravity
1
作者 Chaitra Chooda Chalavadi V Venkatesha +1 位作者 N S Kavya S V Divya Rashmi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第2期111-124,共14页
This paper investigates wormhole solutions within the framework of extended symmetric teleparallel gravity,incorporating non-commutative geometry,and conformal symmetries.To achieve this,we examine the linear wormhole... This paper investigates wormhole solutions within the framework of extended symmetric teleparallel gravity,incorporating non-commutative geometry,and conformal symmetries.To achieve this,we examine the linear wormhole model with anisotropic fluid under Gaussian and Lorentzian distributions.The primary objective is to derive wormhole solutions while considering the influence of the shape function on model parameters under Gaussian and Lorentzian distributions.The resulting shape function satisfies all the necessary conditions for a traversable wormhole.Furthermore,we analyze the characteristics of the energy conditions and provide a detailed graphical discussion of the matter contents via energy conditions.Additionally,we explore the effect of anisotropy under Gaussian and Lorentzian distributions.Finally,we present our conclusions based on the obtained results. 展开更多
关键词 traversable wormhole f(Q T)gravity energy conditions non-commutative geometry conformal motion
原文传递
Thermodynamics of Schwarzschild-AdS black hole in non-commutative geometry
2
作者 Rui-Bo Wang Shi-Jie Ma +2 位作者 Lei You Jian-Bo Deng Xian-Ru Hu 《Chinese Physics C》 2025年第6期223-234,共12页
In this paper, we study the thermodynamics of Schwarzschild-anti-de Sitter black holes within the framework of non-commutative geometry. By solving the Einstein equation, we derive the corrected Schwarzschild-AdS blac... In this paper, we study the thermodynamics of Schwarzschild-anti-de Sitter black holes within the framework of non-commutative geometry. By solving the Einstein equation, we derive the corrected Schwarzschild-AdS black hole with Lorentzian distribution and analyze the thermodynamics. Our results confirm that if the energy-momentum tensor outside the event horizon is related to the mass of the black hole, the conventional first law of thermodynamics will be violated. The study of criticality reveals that the black hole undergoes a small black hole-large black hole phase transition similar to that of the Van der Waals system, with a critical point and critical ratio slightly smaller than that of the Van der Waals fluid. As the non-commutative parameter increases, the phase transition process shortens, leading to a critical point, and ultimately to the disappearance of the phase transition. The violation of the conventional first law results in a discontinuity of the Gibbs free energy during the phase transition, indicating the occurrence of zeroth-order phase transition. Moreover, we investigate the Joule-Thomson expansion, obtaining the minimum inversion temperature and minimum inversion mass. 展开更多
关键词 non-commutative geometry Lorentzian distribution black hole thermodynamics P-v criticality Joule-Thomson expansion
原文传递
A ROOT-based detector geometry and event visualization system for JUNO-TAO
3
作者 Ming-Hua Liao Kai-Xuan Huang +3 位作者 Yu-Mei Zhang Jia-Yang Xu Guo-Fu Cao Zheng-Yun You 《Nuclear Science and Techniques》 2025年第3期50-59,共10页
The Taishan Antineutrino Observatory(TAO)is a satellite experiment of the Jiangmen Underground Neutrino Observatory,located near the Taishan nuclear power plant(NPP).The TAO aims to measure the energy spectrum of reac... The Taishan Antineutrino Observatory(TAO)is a satellite experiment of the Jiangmen Underground Neutrino Observatory,located near the Taishan nuclear power plant(NPP).The TAO aims to measure the energy spectrum of reactor antineutrinos with unprecedented precision,which would benefit both reactor neutrino physics and the nuclear database.A detector geometry and event visualization system was developed for the TAO.The software was based on ROOT packages and embedded in the TAO offline software framework.This provided an intuitive tool for visualizing the detector geometry,tuning the reconstruction algorithm,understanding neutrino physics,and monitoring the operation of reactors at NPP.Further applications of the visualization system in the experimental operation of TAO and its future development are discussed. 展开更多
关键词 Visualization geometry Offline software JUNO TAO
在线阅读 下载PDF
Response properties of geometries of coal penetrating fracture on seepage behavior
4
作者 Penghua Han Kai Wang +2 位作者 Jiewen Pang Xiaofeng Ji Cun Zhang 《International Journal of Mining Science and Technology》 2025年第2期191-211,共21页
The fracture surfaces of coal-rock masses formed under mining-induced stress generally exhibit complex geometries, and the fracture geometry is one of the primary factors affecting the seepage characteristics of coal-... The fracture surfaces of coal-rock masses formed under mining-induced stress generally exhibit complex geometries, and the fracture geometry is one of the primary factors affecting the seepage characteristics of coal-rock penetrating fracture. This paper investigates the seepage characteristics of 5 groups of coal penetrating fracture(CPF) with different joint roughness coefficients(JRCs). Based on 3D morphology scanner tests and hydraulic coupling tests, a characterization method of effective geometric parameters in fracture surfaces under various confining pressures was improved, and a relationship between effective geometric parameters and the confining pressure is established. The results indicate that the nonlinear flow behavior in a CPF primarily includes three types: non-Newtonian fluid seepage under high confining pressure and low JRC, non-Darcy seepage under low confining pressure and high JRC, and the whole process of seepage characteristics between these two conditions. Among them, nonNewtonian fluid seepage is caused by significant fracture expansion, while non-Darcy seepage can be attributed to turbulence effects. During the seepage process, the geometric parameters with different JRC fracture samples all exhibit exponential changes with the increase of confining pressure. In addition,under high confining pressure, the effective contact ratio, effective fracture aperture, and void deviation ratio with high JRC fracture samples under high confining pressure increase by 93.5%, 67.4%, and 24.9%,respectively, compared with those of low JRC fracture samples. According to the variation of geometric parameters in a CPF with external stress, a seepage model considering geometric parameters in a CPF is proposed. By introducing the root mean square error(RMSE) and coefficient of determination(R2) to evaluate the error and goodness of fit between model curves and experimental data, it is found that the theoretical curves of model in this paper have the best matching with the experimental data. The average values of RMSE and R2for model in this paper are 0.002 and 0.70, respectively, which are better than models in the existing literature. 展开更多
关键词 Coal penetrating fracture ROUGHNESS GEOMETRIES Seepage characteristics
在线阅读 下载PDF
Integrating Hard Silicon for High‑Performance Soft Electronics via Geometry Engineering
5
作者 Lei Yan Zongguang Liu +1 位作者 Junzhuan Wang Linwei Yu 《Nano-Micro Letters》 2025年第9期290-336,共47页
Soft electronics,which are designed to function under mechanical deformation(such as bending,stretching,and folding),have become essential in applications like wearable electronics,artificial skin,and brain-machine in... Soft electronics,which are designed to function under mechanical deformation(such as bending,stretching,and folding),have become essential in applications like wearable electronics,artificial skin,and brain-machine interfaces.Crystalline silicon is one of the most mature and reliable materials for high-performance electronics;however,its intrinsic brittleness and rigidity pose challenges for integrating it into soft electronics.Recent research has focused on overcoming these limitations by utilizing structural design techniques to impart flexibility and stretchability to Si-based materials,such as transforming them into thin nanomembranes or nanowires.This review summarizes key strategies in geometry engineering for integrating crystalline silicon into soft electronics,from the use of hard silicon islands to creating out-of-plane foldable silicon nanofilms on flexible substrates,and ultimately to shaping silicon nanowires using vapor-liquid-solid or in-plane solid-liquid-solid techniques.We explore the latest developments in Si-based soft electronic devices,with applications in sensors,nanoprobes,robotics,and brain-machine interfaces.Finally,the paper discusses the current challenges in the field and outlines future research directions to enable the widespread adoption of silicon-based flexible electronics. 展开更多
关键词 Soft electronics SILICON geometry engineering Silicon nanowires
在线阅读 下载PDF
Research on Visual Teaching of Analytic Geometry Based on GeoGebra Software
6
作者 Lianxia Jiang 《Journal of Contemporary Educational Research》 2025年第5期173-180,共8页
This paper delves into the visual teaching of analytic geometry facilitated by GeoGebra software.Through a meticulous analysis of the current landscape of analytic geometry instruction and the distinct advantages of G... This paper delves into the visual teaching of analytic geometry facilitated by GeoGebra software.Through a meticulous analysis of the current landscape of analytic geometry instruction and the distinct advantages of GeoGebra software,it expounds upon the imperative and feasibility of its application within the realm of analytic geometry teaching.Furthermore,it presents a detailed account of the teaching practice process grounded in this software,encompassing teaching design and the demonstration of teaching cases,and conducts an in-depth investigation and analysis of the teaching outcomes.The research findings indicate that the GeoGebra software can effectively elevate the level of visualization in analytic geometry teaching,thereby augmenting students’learning enthusiasm and comprehension capabilities.It thus offers novel perspectives and methodologies for the pedagogical reform of analytic geometry. 展开更多
关键词 GeoGebra software Analytic geometry Visual teaching
在线阅读 下载PDF
Fatigue Resistance in Engineering Components:A Comprehensive Review on the Role of Geometry and Its Optimization
7
作者 Ibrahim T.Teke Ahmet H.Ertas 《Computer Modeling in Engineering & Sciences》 2025年第7期201-237,共37页
Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how str... Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how stress affects lifespan,this review offers the first comprehensive,multiscale comparison of strategies that optimize geometry to improve fatigue performance.This includes everything from microscopic features like the shape of graphite nodules to large-scale design elements such as fillets,notches,and overall structural layouts.We analyze and combine various methods,including topology and shape optimization,the ability of additive manufacturing to finetune internal geometries,and reliability-based design approaches.A key new contribution is our proposal of a standard way to evaluate geometry-focused fatigue design,allowing for consistent comparison and encouraging validation across different fields.Furthermore,we highlight important areas for future research,such as incorporating manufacturing flaws,using multiscale models,and integrating machine learning techniques.This work is the first to provide a broad geometric viewpoint in fatigue engineering,laying the groundwork for future design methods that are driven by data and centered on reliability. 展开更多
关键词 Fatigue resistance geometry optimization topology optimization microstructural geometry additive manufacturing crack initiation multiaxial fatigue reliability-based design raster orientation notch effect defect morphology fatigue life prediction
在线阅读 下载PDF
Solution of multigroup neutron diffusion equation in 3D hexagonal geometry using nodal Green's function method
8
作者 Il-Mun Ho Kum-Hyok Ok Chol So 《Nuclear Science and Techniques》 2025年第9期33-42,共10页
In this paper,we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geometry using the nodal Green's function method and verified it.We obtained one-dimensional tran... In this paper,we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geometry using the nodal Green's function method and verified it.We obtained one-dimensional transverse integrated equations using the transverse integration procedure over 3D hexagonal geometry and denoted the solutions as a nodal Green's functions under the Neumann boundary condition.By applying a quadratic polynomial expansion of the transverse-averaged quantities,we derived the net neutron current coupling equation,equation for the expansion coefficients of the transverse-averaged neutron flux,and formulas for the coefficient matrix of these equations.We formulated the closed system of equations in correspondence with the boundary conditions.The proposed model was tested by comparing it with the benchmark for the VVER-440 reactor,and the numerical results were in good agreement with the reference solutions. 展开更多
关键词 NGFM Hexagonal geometry Multigroup neutron diffusion equation
在线阅读 下载PDF
Differential-geometry-based multi-dimensional joint position-velocity estimation using Crab pulsar profile distortion
9
作者 Jin LIU Huanzi ZHANG +1 位作者 Xiaolin NING Xin MA 《Chinese Journal of Aeronautics》 2025年第1期551-567,共17页
The traditional orbit determination method based on pulsar profile distortion can determine the six elements of the orbit.However,the estimation accuracies of these methods are limited and the computational load of a ... The traditional orbit determination method based on pulsar profile distortion can determine the six elements of the orbit.However,the estimation accuracies of these methods are limited and the computational load of a six-dimensional search is huge.To solve this problem,the differential-geometry-based Multi-dimensional Joint Position-Velocity Estimation(MJPVE)using Crab pulsar profile distortion is proposed in this paper.Firstly,through theoretical analysis,it is found that the pulsar profile distortion caused by the initial state error in some joint positionvelocity directions is very small.In other words,the accuracies of estimation in these directions are very low.Namely,the search dimension can be reduced,which in turn greatly reduces the computational load.Then,we construct the chi-squared function of the pulsar profile with respect to the estimation error in joint position-velocity direction and use differential geometry to find the joint position-velocity directions corresponding to different degrees of distortion.Finally,we utilize the grid search based on directory folding in these joint position-velocity directions corresponding to large degrees of distortion to obtain the joint position-velocity estimation.The experimental results show that compared with the grouping bi-chi-squared inversion method,MJPVE has high precision and extensive navigation information. 展开更多
关键词 Joint Position-Velocity Estimation PULSARS Profile Distortion Orbit Determination Differential geometry
原文传递
Analytical Modeling and Comparative Analysis of Capillary Imbibition in Shale Pores of Various Geometries
10
作者 Jin Xue Boyun Guo 《Computer Modeling in Engineering & Sciences》 2025年第9期3307-3328,共22页
Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study establis... Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study established five self-imbibition models with idealized pore structures and conducted a comparative analysis of these models.These models include circular,square,and equilateral triangular capillaries;a triangular star-shaped cross-section formed by three tangent spherical particles;and a traditional porous medium representation method.All these models are derived based on Newton’s second law,where capillary pressure is described by the Young-Laplace equation and viscous resistance is characterized by the Hagen-Poiret equation and Darcy’s law.All derived models predict that the fluid imbibition distance is proportional to the square root of time,in accordance with the classical Lucas-Washburn law.However,different pore structures exhibit significantly different characteristic imbibition rates.Compared to the single pore model,the conventional Darcy’s law-based model for porous media predicts significantly lower imbibition rates,which is consistent with the relatively slower uptake rates in actual shale nanoscale pore networks.These findings emphasize the important role played by pore geometry in fluid imbibition dynamics and further point to the need for optimizing pore structure to extend fluid imbibition duration in shale reservoirs in practical operations. 展开更多
关键词 Spontaneous imbibition capillary flow pore geometry triangular-star channel analytical model
在线阅读 下载PDF
The Design Method of Cross-well Seismic Geometry Driven by Reverse Time Migration
11
作者 Cao Xiao-yong Yang Fei-long +4 位作者 Hui Wei-jing Ruan Shao-hua Yu Dai Fang Wen-zhen Guo Xin-yue 《Applied Geophysics》 2025年第3期623-634,892,共13页
Reasonable field acquisition geometry can not only guide seismic exploration to obtain sufficient geological information of target body,but also reduce acquisition cost to the maximum.In this study,building on convent... Reasonable field acquisition geometry can not only guide seismic exploration to obtain sufficient geological information of target body,but also reduce acquisition cost to the maximum.In this study,building on conventional ray-based geometry design methods,we incorporate imaging results as a constraint to optimize the geometry design and evaluate its effectiveness.Firstly,the geological model of the target layer is established based on the geological data of the study area and surface seismic data combined with exploration tasks.Then,the ray-tracing method is employed to simulate and assess the proposed geometry design,verifying whether its parameters meet the exploration requirements.Finally,the imaging effect of the designed geometry on the target layer is tested by the cross-well seismic reverse time migration method.This methodology was applied to design the cross-well seismic acquisition geometry for offshore deviated wells in the X Oilfield.The simulation results demonstrate that the imaging-driven geometry design approach effectively guides field operations,enhances the imaging quality of the target layer,and reduces acquisition costs. 展开更多
关键词 Crosswell seismic geometry design IMAGING Ray tracing Reverse time migration
在线阅读 下载PDF
Machine learning-based aftershock seismicity of the 2015 Gorkha earthquake controlled by flat-ramp geometry and a tear fault
12
作者 Yeyang Kuang Jiangtao Li 《Earthquake Science》 2025年第1期17-32,共16页
The Main Himalayan Thrust(MHT),where the 2015 MW7.8 Gorkha earthquake occurred,features the most seismicity of any structure in Nepal.The structural complexity of the MHT makes it difficult to obtain a definitive inte... The Main Himalayan Thrust(MHT),where the 2015 MW7.8 Gorkha earthquake occurred,features the most seismicity of any structure in Nepal.The structural complexity of the MHT makes it difficult to obtain a definitive interpretation of deep seismogenic structures.The application of new methods and data in this region is necessary to enhance local seismic hazard analyses.In this study,we used a well-designed machine learning-based earthquake location workflow(LOC-FLOW),which incorporates machine learning phase picking,phase association,absolute location,and double-difference relative location,to process seismic data collected by the Hi-CLIMB and NAMASTE seismic networks.We built a high-precision earthquake catalog of both the quiet-period and aftershock seismicity in this region.The seismicity distribution suggests that the quietperiod seismicity(388 events)was controlled by a mid-crustal ramp and the aftershock seismicity(12,669 events)was controlled by several geological structures of the MHT.The higher-level detail of the catalogs derived from this machine learning method reveal clearer structural characteristics,showing how the flat-ramp geometry and a possible duplex structure affect the depth distribution of the seismic events,and how a tear fault changes this distribution along strike. 展开更多
关键词 aftershock seismicity 2015 Gorkha earthquake machine learning flat-ramp geometry tear fault
在线阅读 下载PDF
Implicit geometry neural network for mesh generation
13
作者 Ran XU Hongqiang LYU +4 位作者 Jian YU Chenyu BAO Hongfei WANG Yufei LIU Xuejun LIU 《Chinese Journal of Aeronautics》 2025年第4期91-111,共21页
The accuracy of numerical computation heavily relies on appropriate meshing,whichserves as the foundation for numerical computation.Although adaptive refinement methods areavailable,an adaptive numerical solution is l... The accuracy of numerical computation heavily relies on appropriate meshing,whichserves as the foundation for numerical computation.Although adaptive refinement methods areavailable,an adaptive numerical solution is likely to be ineffective if it originates from a poorly ini-tial mesh.Therefore,it is crucial to generate meshes that accurately capture the geometric features.As an indispensable input in meshing methods,the Mesh Size Function(MSF)determines the qual-ity of the generated mesh.However,the current generation of MSF involves human participation tospecify numerous parameters,leading to difficulties in practical usage.Considering the capacity ofmachine learning to reveal the latent relationships within data,this paper proposes a novel machinelearning method,Implicit Geometry Neural Network(IGNN),for automatic prediction of appro-priate MSFs based on the existing mesh data,enabling the generation of unstructured meshes thatalign precisely with geometric features.IGNN employs the generative adversarial theory to learnthe mapping between the implicit representation of the geometry(Signed Distance Function,SDF)and the corresponding MSF.Experimental results show that the proposed method is capableof automatically generating appropriate meshes and achieving comparable meshing results com-pared to traditional methods.This paper demonstrates the possibility of significantly decreasingthe workload of mesh generation using machine learning techniques,and it is expected to increasethe automation level of mesh generation. 展开更多
关键词 Mesh generation Implicit geometry Mesh size function Geometric features Generative adversarial learning
原文传递
Computational analysis of Ti-6Al-4V thoracic implants with a spring-like geometry for anterior chest wall reconstruction
14
作者 Alejandro BOLANOS Alejandro YANEZ +2 位作者 Alberto CUADRADO Maria Paula FIORUCCI Belinda MENTADO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第7期679-693,共15页
Thoracic reconstructions are essential surgical techniques used to replace severely damaged tissues and restore protection to internal organs.In recent years,advancements in additive manufacturing have enabled the pro... Thoracic reconstructions are essential surgical techniques used to replace severely damaged tissues and restore protection to internal organs.In recent years,advancements in additive manufacturing have enabled the production of thoracic implants with complex geometries,offering more versatile performance.In this study,we investigated a design based on a spring-like geometry manufactured by laser powder bed fusion(LPBF),as proposed in earlier research.The biomechanical behavior of this design was analyzed using various isolated semi-ring-rib models at different levels of the rib cage.This approach enabled a comprehensive examination,leading to the proposal of several implant configurations that were incorporated into a 3D rib cage model with chest wall defects,to simulate different chest wall reconstruction scenarios.The results revealed that the implant design was too rigid for the second rib level,which therefore was excluded from the proposed implant configurations.In chest wall reconstruction simulations,the maximum stresses observed in all prostheses did not exceed 38%of the implant material's yield stress in the most unfavorable case.Additionally,all the implants showed flexibility compatible with the physiological movements of the human thorax. 展开更多
关键词 Chest wall reconstruction Thoracic implant Spring-like geometry Semi-ring-rib model Computational analysis
原文传递
Isogeometric Shell Analysis of Multi-sided CAD Geometries Using Toric Surfaces
15
作者 Hanhan Chai Xuefeng Zhu +4 位作者 Zikang Yang An Xi Chunhui Yang Xiangkui Zhang Ping Hu 《Acta Mechanica Solida Sinica》 2025年第5期764-775,共12页
To address the challenges associated with multi-sided shells in traditional isogeometric analysis(IGA),this paper introduces a novel isogeometric shell method for trimmed CAD geometries based on toric surfaces and Rei... To address the challenges associated with multi-sided shells in traditional isogeometric analysis(IGA),this paper introduces a novel isogeometric shell method for trimmed CAD geometries based on toric surfaces and Reissner–Mindlin shell theory.By utilizing toric surface patches,both trimmed and untrimmed elements of the CAD surfaces are represented through a unified geometric framework,ensuring continuity and an accurate geometric description.Toric-Bernstein basis functions are employed to accurately interpolate the geometry and displacement of the trimmed shell.For singularities and corner points on the toric surface,the normal vector is defined as the unit directional vector from the center of curvature to the corresponding control point.Several numerical examples of polygonal shells are presented to evaluate the effectiveness and robustness of the proposed method.This approach significantly simplifies the treatment of trimmed shell IGA and provides a promising solution for simulating complex shell structures with intricate boundaries. 展开更多
关键词 Toric surfaces Reissner–Mindlin shell theory Multi-sided geometry Isogeometric analysis
原文传递
Geometric parameter identification of bridge precast box girder sections based on deep learning and computer vision
16
作者 JIA Jingwei NI Youhao +2 位作者 MAO Jianxiao XU Yinfei WANG Hao 《Journal of Southeast University(English Edition)》 2025年第3期278-285,共8页
To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is deve... To overcome the limitations of low efficiency and reliance on manual processes in the measurement of geometric parameters for bridge prefabricated components,a method based on deep learning and computer vision is developed to identify the geometric parameters.The study utilizes a common precast element for highway bridges as the research subject.First,edge feature points of the bridge component section are extracted from images of the precast component cross-sections by combining the Canny operator with mathematical morphology.Subsequently,a deep learning model is developed to identify the geometric parameters of the precast components using the extracted edge coordinates from the images as input and the predefined control parameters of the bridge section as output.A dataset is generated by varying the control parameters and noise levels for model training.Finally,field measurements are conducted to validate the accuracy of the developed method.The results indicate that the developed method effectively identifies the geometric parameters of bridge precast components,with an error rate maintained within 5%. 展开更多
关键词 bridge precast components section geometry parameters size identification computer vision deep learning
在线阅读 下载PDF
Multi-mode acceleration optimization control for adaptive cycle engine based on variable geometry components
17
作者 Yifan WANG Haoying CHEN +1 位作者 Xuankai LIU Haibo ZHANG 《Chinese Journal of Aeronautics》 2025年第9期3-25,共23页
The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of... The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of thrust.Therefore,this paper proposes a multi-mode acceleration optimization control method that simultaneously performs ACE acceleration and mode transition.Firstly,an ACE component model with inlet flow characteristics was established,and the performance before and after mode transition were analyzed.Secondly,the principle of ACE acceleration optimization was analyzed,and the Front Variable Area Bypass Injector(FVABI)and Mode Selection Valve(MSV)were adopted in the acceleration process.Finally,based on the Sequential Quadratic Programming(SQP)algorithm,considering the degradation effects of engine components,we optimize the acceleration control plan for fuel and variable geometry mechanisms.The simulation results show that at the subsonic cruise point,the ACE multi-mode acceleration optimization control method can shorten the acceleration time from idle to middle state by 30.33%,and accelerate the thrust response speed by 33.72%.When the compressor flow rate of ACE deteriorates by 2% and the high-pressure turbine efficiency deteriorates by 4%,the adaptive acceleration control plan increases the high-pressure speed by 2.13% and thrust by about 6.82%;within the flight envelope,the acceleration time is reduced by more than 25%,and the thrust response speed is increased by more than 20%. 展开更多
关键词 Adaptive cycle engine Mode transition Multivariate acceleration plan Sequential quadratic planning Variable geometry components
原文传递
Effect of Tooth Geometry on Multi-cycle Meshing Temperature of POM Worm Gears:Parametric Study via an Adaptive Iteration Algorithm
18
作者 Kaixing Li Wujiao Xu +1 位作者 Yonggang Liu Datong Qin 《Chinese Journal of Mechanical Engineering》 2025年第2期427-439,共13页
Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle... Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry. 展开更多
关键词 POM worm gears Multi-cycle meshing temperature Adaptive iteration algorithm Tooth geometry parameters Parametric study
在线阅读 下载PDF
A new rope-sheave traction contact force model incorporating complex geometric features developed through parameter identification methods
19
作者 Yunting HAN Hui HU +1 位作者 Haoran SUN Xi SHI 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1983-2006,共24页
The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents consid... The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents considerable challenges.This study focuses on the helically twisted wire rope-sheave contact and proposes a contact force model that incorporates complex geometric features through a parameter identification approach.The model's impact on contact forces and system dynamics is thoroughly investigated.Leveraging a point contact model and an elliptic integral approximation,a loss function is formulated using the finite element(FE)contact model results as the reference data.Geometric parameters are subsequently determined by optimizing this loss function via a genetic algorithm(GA).The findings reveal that the contact stiffness increases with the wire rope pitch length,the radius of principal curvature,and the elliptic eccentricity of the contact zone.The proposed contact force model is integrated into a rigid-flexible coupled dynamics model,developed by the absolute node coordinate formulation,to examine the effects of contact geometry on system dynamics.The results demonstrate that the variations in wire rope geometry alter the contact stiffness,which in turn affects dynamic rope tension through frictional energy dissipation.The enhanced model's predictions exhibit superior alignment with the experimental data,thereby validating the methodology.This approach provides new insights for deducing the contact geometry from kinetic parameters and monitoring the performance degradation of mechanical components. 展开更多
关键词 complex contact geometry contact force modeling parameter identification helical wire rope rigid-flexible couple dynamics modeling
在线阅读 下载PDF
Effect of Spatial Variability in the Geometry of Fractures on Granite Slope Stability
20
作者 Lin Jia Jing-Sen Cai +3 位作者 Li Wu Tian-Chyi Jim Yeh E-Chuan Yan Yi Du 《Journal of Earth Science》 2025年第5期1923-1935,共13页
A DFN-DEC(discrete fracture network-distinct element code)method based on the MATLAB platform is developed to generate heterogeneous DFN.Subsequently,the effects of the spatial variability(the meanμand the standard d... A DFN-DEC(discrete fracture network-distinct element code)method based on the MATLAB platform is developed to generate heterogeneous DFN.Subsequently,the effects of the spatial variability(the meanμand the standard deviationσ)of the geometric properties(i.e.,the fracture dip D,the trace length T and the spacing S)of both the gently-dipping(denoted with 1)and the steeply-dipping(denoted with 2)fractures on the stability of granite slope are investigated.Results indicate that the proposed DFN-DEC method is robust,generating fracture networks that resemble reality.In addition,the spatial variability of fracture geometry,influencing the structure of granite slope,plays a significant role in slope stability.The mean stability of the slope decreases with the increase ofμ_(D_(1))(the mean of gently-dipping fracture dip),σ_(D_(2))(the mean of steeply-dipping fracture dip),μ_(T_(1))(the mean of gently-dipping fracture trace length),μ_(T_(2))(the mean of steeply-dipping fracture trace length),σ_(T_(1))(the standard deviation of gently-dipping fracture trace length),σ_(T_(2))(the standard deviation of steeply-dipping fracture trace length),and the decrease ofσ_(D_(1))(the standard deviation of gently-dipping fracture dip),μ_(D_(2))(the standard deviation of steeply-dipping fracture dip),μ_(S_(1))(the mean of gently-dipping fracture spacing)andμ_(S_(2))(the mean of steeply-dipping fracture spacing).Among them,μ_(T_(1)),μ_(D_(1))andμ_(S_(1))have the major impact.When the fracture spacing is large,the variability in the fracture geometry becomes less relevant to slope stability.When within some ranges of the fracture spacing,the spatial varying of dips can increase the slope stability by forming an interlaced structure.The results also show that the effects of the variability of trace length on slope stability depend on the variability of dip.These findings highlight the importance of spatial variability in the geometry of fractures to rock slope stability analysis. 展开更多
关键词 slope stability spatial variability geometry of fractures steep-gentle combined fracture model DFN-DEC method engineering geology
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部