Integrating land use type and other geographic information within spatial interpolation has been proposed as a solution to improve the performance and accuracy of soil nutrient mapping at the regional scale. This stud...Integrating land use type and other geographic information within spatial interpolation has been proposed as a solution to improve the performance and accuracy of soil nutrient mapping at the regional scale. This study developed a non-algorithm approach, i.e., applying inverse distance weighting (IDW) and ordinary kriging (OK), to individual land use types rather than to the whole watershed, to determine if this improved the performance in mapping soil total C (TC), total N (TN), and total P (TP) in a 200-km2 urbanizing watershed in Southeast China. Four land use types were identified by visual interpretation as forest land, agricultural land, green land, and urban land. One hundred and fifty soil samples (0-10 cm) were taken according to land use type and patch size. Results showed that the non-algorithm approach, interpolation based on individual land use types, substantially improved the performance of IDW and OK for mapping TC, TN, and TP in the watershed. Root mean square errors were reduced by 3.9% for TC, 10.770 for TN, and 25.9% for TP by the application of IDW, while the improvements by OK were slightly lower as 0.9% for TC, 7.7% for TN, and 18.1% for TP. Interpolations based on individual land use types visually improved depiction of spatial patterns for TC, TN, and TP in the watershed relative to interpolations by the whole watershed. Substantial improvements might be expected with denser sampling points. We suggest that this non-algorithm approach might provide an alternative to algorithm-based approaches to depict watershed-scale nutrient patterns.展开更多
The ability to accurately estimate the cost needed to complete a specific project has been a challenge over the past decades. For a successful software project, accurate prediction of the cost, time and effort is a ve...The ability to accurately estimate the cost needed to complete a specific project has been a challenge over the past decades. For a successful software project, accurate prediction of the cost, time and effort is a very much essential task. This paper presents a systematic review of different models used for software cost estimation which includes algorithmic methods, non-algorithmic methods and learning-oriented methods. The models considered in this review include both the traditional and the recent approaches for software cost estimation. The main objective of this paper is to provide an overview of software cost estimation models and summarize their strengths, weakness, accuracy, amount of data needed, and validation techniques used. Our findings show, in general, neural network based models outperforms other cost estimation techniques. However, no one technique fits every problem and we recommend practitioners to search for the model that best fit their needs.展开更多
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YWJC402)the Hundred Talents Program of Chinese Academy of Sciences(No.A0815)+1 种基金the National Natural Science Foundation of China(No.41371474)supported by the Chinese Academy of Sciences Visiting Professorships for Senior International Scientists in 2011(No.2011T2Z18)
文摘Integrating land use type and other geographic information within spatial interpolation has been proposed as a solution to improve the performance and accuracy of soil nutrient mapping at the regional scale. This study developed a non-algorithm approach, i.e., applying inverse distance weighting (IDW) and ordinary kriging (OK), to individual land use types rather than to the whole watershed, to determine if this improved the performance in mapping soil total C (TC), total N (TN), and total P (TP) in a 200-km2 urbanizing watershed in Southeast China. Four land use types were identified by visual interpretation as forest land, agricultural land, green land, and urban land. One hundred and fifty soil samples (0-10 cm) were taken according to land use type and patch size. Results showed that the non-algorithm approach, interpolation based on individual land use types, substantially improved the performance of IDW and OK for mapping TC, TN, and TP in the watershed. Root mean square errors were reduced by 3.9% for TC, 10.770 for TN, and 25.9% for TP by the application of IDW, while the improvements by OK were slightly lower as 0.9% for TC, 7.7% for TN, and 18.1% for TP. Interpolations based on individual land use types visually improved depiction of spatial patterns for TC, TN, and TP in the watershed relative to interpolations by the whole watershed. Substantial improvements might be expected with denser sampling points. We suggest that this non-algorithm approach might provide an alternative to algorithm-based approaches to depict watershed-scale nutrient patterns.
文摘The ability to accurately estimate the cost needed to complete a specific project has been a challenge over the past decades. For a successful software project, accurate prediction of the cost, time and effort is a very much essential task. This paper presents a systematic review of different models used for software cost estimation which includes algorithmic methods, non-algorithmic methods and learning-oriented methods. The models considered in this review include both the traditional and the recent approaches for software cost estimation. The main objective of this paper is to provide an overview of software cost estimation models and summarize their strengths, weakness, accuracy, amount of data needed, and validation techniques used. Our findings show, in general, neural network based models outperforms other cost estimation techniques. However, no one technique fits every problem and we recommend practitioners to search for the model that best fit their needs.