期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preoperatively predicting vessels encapsulating tumor clusters in hepatocellular carcinoma:Machine learning model based on contrast-enhanced computed tomography 被引量:1
1
作者 Chao Zhang Hai Zhong +3 位作者 Fang Zhao Zhen-Yu Ma Zheng-Jun Dai Guo-Dong Pang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第3期857-874,共18页
BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in a... BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in an invasion independent manner,and was regarded as an independent risk factor for poor prognosis in hepatocellular carcinoma(HCC).AIM To develop and validate a preoperative nomogram using contrast-enhanced computed tomography(CECT)to predict the presence of VETC+in HCC.METHODS We retrospectively evaluated 190 patients with pathologically confirmed HCC who underwent CECT scanning and immunochemical staining for cluster of differentiation 34 at two medical centers.Radiomics analysis was conducted on intratumoral and peritumoral regions in the portal vein phase.Radiomics features,essential for identifying VETC+HCC,were extracted and utilized to develop a radiomics model using machine learning algorithms in the training set.The model’s performance was validated on two separate test sets.Receiver operating characteristic(ROC)analysis was employed to compare the identified performance of three models in predicting the VETC status of HCC on both training and test sets.The most predictive model was then used to constructed a radiomics nomogram that integrated the independent clinical-radiological features.ROC and decision curve analysis were used to assess the performance characteristics of the clinical-radiological features,the radiomics features and the radiomics nomogram.RESULTS The study included 190 individuals from two independent centers,with the majority being male(81%)and a median age of 57 years(interquartile range:51-66).The area under the curve(AUC)for the combined radiomics features selected from the intratumoral and peritumoral areas were 0.825,0.788,and 0.680 in the training set and the two test sets.A total of 13 features were selected to construct the Rad-score.The nomogram,combining clinicalradiological and combined radiomics features could accurately predict VETC+in all three sets,with AUC values of 0.859,0.848 and 0.757.Decision curve analysis revealed that the radiomics nomogram was more clinically useful than both the clinical-radiological feature and the combined radiomics models.CONCLUSION This study demonstrates the potential utility of a CECT-based radiomics nomogram,incorporating clinicalradiological features and combined radiomics features,in the identification of VETC+HCC. 展开更多
关键词 Hepatocellular carcinoma Vessels encapsulating tumor clusters Intratumoral and peritumoral regions Radiomics features nomog
暂未订购
预测住院患者获得耐碳青霉烯类铜绿假单胞菌医院感染的列线图模型的构建 被引量:6
2
作者 陈志辉 吴红梅 +2 位作者 徐子琴 高胜春 陈乐 《中华医院感染学杂志》 CAS CSCD 北大核心 2019年第7期966-970,共5页
目的探讨住院患者获得耐碳青霉烯类铜绿假单胞菌(Carbapenem-Resistant Pseudomonas aeruginosa,CRPA)医院感染的影响因素,并构建列线图风险预测模型。方法回顾性分析2014年1月1日-2018年1月7日入住温州市人民医院的发生铜绿假单胞菌医... 目的探讨住院患者获得耐碳青霉烯类铜绿假单胞菌(Carbapenem-Resistant Pseudomonas aeruginosa,CRPA)医院感染的影响因素,并构建列线图风险预测模型。方法回顾性分析2014年1月1日-2018年1月7日入住温州市人民医院的发生铜绿假单胞菌医院感染的180例患者的临床资料,在多因素Logistic回归分析结果基础上建立预测住院患者获得CRPA医院感染的列线图模型。结果多因素Logistic回归分析显示,患者年龄、Charlson合并症指数评分、感染前30d内使用碳青霉烯类抗菌药物以及机械通气治疗是发生CRPA医院感染的独立影响因素;根据回归系数(β)建立的评分模型如下:Logistic(P)=-2.01+1.03×(Charlson合并症指数评分>4分=1)+1.16×(感染前30d内使用碳青霉烯类抗菌药物=1)+1.18×(年龄≥65岁=1)+1.46×(机械通气治疗=1);利用R软件绘制的列线图,其初始一致性指数(C-index)为0.802,经1000次的模型内部验证后一致性指数(C-index)为0.797。结论基于上述4个影响因素构建的列线图能较为准确预测住院患者获得CRPA医院感染的风险。 展开更多
关键词 碳青霉烯类 耐药性 铜绿假单胞菌 医院感染 列线图
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部