In terms of our new exact definition of partial Lagrangian and approximate Euler-Lagrange-type equation, we investigate the nonlinear wave equation with damping via approximate Noether-type symmetry operators associat...In terms of our new exact definition of partial Lagrangian and approximate Euler-Lagrange-type equation, we investigate the nonlinear wave equation with damping via approximate Noether-type symmetry operators associated with partial Lagrangians and construct its approximate conservation laws in general form.展开更多
The algorithm for constructing conservation laws of Euler Lagvange type equations via Noether-type symmetry operators associated with partial Lagrangian has been presented. As applications, many new conservation laws ...The algorithm for constructing conservation laws of Euler Lagvange type equations via Noether-type symmetry operators associated with partial Lagrangian has been presented. As applications, many new conservation laws of some important systems of nonlinear partial differential equations have been obtained.展开更多
In this paper, Noether theory of Lagrange systems in discrete case are studied. First, we briefly overview the wellknown Noether theory of Lagrange system in the continuous case. Then, we introduce some definitions an...In this paper, Noether theory of Lagrange systems in discrete case are studied. First, we briefly overview the wellknown Noether theory of Lagrange system in the continuous case. Then, we introduce some definitions and notations, such as the operators of discrete translation to the right and the left and the operators of discrete differentiation to the right and the left, and give the conditions for the invariance of the difference functional on the uniform lattice and the non-uniform one, respectively. We also deduce the discrete analog of the Noether-type identity. Finally, the discrete analog of Noether's theorem is presented. An example was discussed to illustrate these results.展开更多
To study Lie symmetry and the conserved quantity of a generalized Birkhoff system with additional terms, the determining equations of the Lie symmetry of the system is derived. A con- served quantity of Hojman' s typ...To study Lie symmetry and the conserved quantity of a generalized Birkhoff system with additional terms, the determining equations of the Lie symmetry of the system is derived. A con- served quantity of Hojman' s type and a Noether' s conserved quantity are deduced by the Lie symme- try under some conditions. One example is given to illustrate the application of the result.展开更多
In this paper, we have completely classified the locally rotationally symmetric(LRS) Bianchi Type Ⅰ spacetimes via Noether symmetries(NS). The usual Lagrangian corresponding to LRS Bianchi Type Ⅰ metric is used to f...In this paper, we have completely classified the locally rotationally symmetric(LRS) Bianchi Type Ⅰ spacetimes via Noether symmetries(NS). The usual Lagrangian corresponding to LRS Bianchi Type Ⅰ metric is used to find the set of determining equations. To achieve a complete classification, these determining equations are generally integrated to find the components of NS vector field and the metric coefficients. During this procedure, several cases arise which give different Noether algebras of dimension 5,..., 9, 11, and 17. A comparison is established between the obtained NS and the Killing and homothetic vectors. Corresponding to all NS generators, the conservation laws are stated by using Noether's theorem. The metrics which we have obtained as a result of our classification are shown to be anisotropic or perfect fluids which satisfy certain energy conditions.展开更多
We classify a generalized coupled singular Emden-Fowler type system +a(t)vn=0,v+b(t)um=0 with respect to the standard first-order Lagrangian according to the Noether point symmetries which it admits.First integr...We classify a generalized coupled singular Emden-Fowler type system +a(t)vn=0,v+b(t)um=0 with respect to the standard first-order Lagrangian according to the Noether point symmetries which it admits.First integrals of the various cases which admit Noether point symmetries are then obtained.This system was discussed in the literature from the view-point of existence and uniqueness of positive solutions.展开更多
Based on the weak Noether symmetry proposed by Mei F X, this paper discusses the weak Noether symmetry for nonholonomic system of non-Chetaev type, and presents expressions of three kinds of conserved quantities by we...Based on the weak Noether symmetry proposed by Mei F X, this paper discusses the weak Noether symmetry for nonholonomic system of non-Chetaev type, and presents expressions of three kinds of conserved quantities by weak Noether symmetry. Finally, the application of this new results is showed by a practical example.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘In terms of our new exact definition of partial Lagrangian and approximate Euler-Lagrange-type equation, we investigate the nonlinear wave equation with damping via approximate Noether-type symmetry operators associated with partial Lagrangians and construct its approximate conservation laws in general form.
基金supported by the State Key Basic Research Program of China under Grant No.2004CB318000
文摘The algorithm for constructing conservation laws of Euler Lagvange type equations via Noether-type symmetry operators associated with partial Lagrangian has been presented. As applications, many new conservation laws of some important systems of nonlinear partial differential equations have been obtained.
基金Project supported by the National Natural Science Foundation of China(Grant No.10872037)the Natural Science Foundationof Anhui Province,China(Grant No.070416226)
文摘In this paper, Noether theory of Lagrange systems in discrete case are studied. First, we briefly overview the wellknown Noether theory of Lagrange system in the continuous case. Then, we introduce some definitions and notations, such as the operators of discrete translation to the right and the left and the operators of discrete differentiation to the right and the left, and give the conditions for the invariance of the difference functional on the uniform lattice and the non-uniform one, respectively. We also deduce the discrete analog of the Noether-type identity. Finally, the discrete analog of Noether's theorem is presented. An example was discussed to illustrate these results.
基金Supported by the National Natural Science Foundation of China(10772025)the Key Program of the National Natural Science Foundation of China(10932002)
文摘To study Lie symmetry and the conserved quantity of a generalized Birkhoff system with additional terms, the determining equations of the Lie symmetry of the system is derived. A con- served quantity of Hojman' s type and a Noether' s conserved quantity are deduced by the Lie symme- try under some conditions. One example is given to illustrate the application of the result.
基金Supported by the Higher Education Commission of Pakistan for Granting Indigenous Ph.D Fellowship
文摘In this paper, we have completely classified the locally rotationally symmetric(LRS) Bianchi Type Ⅰ spacetimes via Noether symmetries(NS). The usual Lagrangian corresponding to LRS Bianchi Type Ⅰ metric is used to find the set of determining equations. To achieve a complete classification, these determining equations are generally integrated to find the components of NS vector field and the metric coefficients. During this procedure, several cases arise which give different Noether algebras of dimension 5,..., 9, 11, and 17. A comparison is established between the obtained NS and the Killing and homothetic vectors. Corresponding to all NS generators, the conservation laws are stated by using Noether's theorem. The metrics which we have obtained as a result of our classification are shown to be anisotropic or perfect fluids which satisfy certain energy conditions.
文摘We classify a generalized coupled singular Emden-Fowler type system +a(t)vn=0,v+b(t)um=0 with respect to the standard first-order Lagrangian according to the Noether point symmetries which it admits.First integrals of the various cases which admit Noether point symmetries are then obtained.This system was discussed in the literature from the view-point of existence and uniqueness of positive solutions.
基金supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)the Doctoral Programme Foundation of Institute of Higher Education of China (Grant No 20040007022)
文摘Based on the weak Noether symmetry proposed by Mei F X, this paper discusses the weak Noether symmetry for nonholonomic system of non-Chetaev type, and presents expressions of three kinds of conserved quantities by weak Noether symmetry. Finally, the application of this new results is showed by a practical example.