In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overl...In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overlooking congestion issues on feeder links caused by the limited number and centralized distribution of ground stations.Hence,a multi-service routing algorithm called the Multi-service Load Bal-ancing Routing Algorithm for Traffic Return(MLB-TR)is proposed.Unlike traditional approaches,MLB-TR aims to achieve a broader and more comprehensive load balancing objective.Specifically,based on the service type,an appropriate landing satellite is first selected by considering factors such as shortest path hop count and satellite load.Then,a set of candidate paths from the source satellite to the selected landing satellite is computed.Finally,using the regional load balancing index as the optimization objective,the final transmission path is selected from the candidate path set.Simulation results show that the proposed algo-rithm outperforms the existing works.展开更多
In deep drilling applications,such as those for geothermal energy,there are many challenges,such as those related to efficient operation of the drilling fluid(mud)pumping system.Legacy drilling rigs often use paired,p...In deep drilling applications,such as those for geothermal energy,there are many challenges,such as those related to efficient operation of the drilling fluid(mud)pumping system.Legacy drilling rigs often use paired,parallel-connected independent-excitation direct-current(DC)motors for mud pumps,that are supplied by a single power converter.This configuration results in electrical power imbalance,thus reducing its efficiency.This paper investigates this power imbalance issue in such legacy DC mud pump drive systems and offers an innovative solution in the form of a closed-loop control system for electrical load balancing.The paper first analyzes the drilling fluid circulation and electrical drive layout to develop an analytical model that can be used for electrical load balancing and related energy efficiency improvements.Based on this analysis,a feedback control system(so-called“current mirror”control system)is designed to balance the electrical load(i.e.,armature currents)of parallel-connected DC machines by adjusting the excitation current of one of the DC machines,thus mitigating the power imbalance of the electrical drive.Theproposed control systemeffectiveness has been validated,first through simulations,followed by experimental testing on a deep drilling rig during commissioning and field tests.The results demonstrate the practical viability of the proposed“current mirror”control system that can effectively and rather quickly equalize the armature currents of both DC machines in a parallel-connected electrical drive,and thus balance both the electrical and mechanical load of individual DC machines under realistic operating conditions of the mud pump electrical drive.展开更多
The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is n...The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is needed.Possible load balancing is needed to overcome user task execution delay and system failure.Most swarm intelligent dynamic load balancing solutions that used hybrid metaheuristic algorithms failed to balance exploitation and exploration.Most load balancing methods were insufficient to handle the growing uncertainty in job distribution to VMs.Thus,the Hybrid Spotted Hyena and Whale Optimization Algorithm-based Dynamic Load Balancing Mechanism(HSHWOA) partitions traffic among numerous VMs or servers to guarantee user chores are completed quickly.This load balancing approach improved performance by considering average network latency,dependability,and throughput.This hybridization of SHOA and WOA aims to improve the trade-off between exploration and exploitation,assign jobs to VMs with more solution diversity,and prevent the solution from reaching a local optimality.Pysim-based experimental verification and testing for the proposed HSHWOA showed a 12.38% improvement in minimized makespan,16.21% increase in mean throughput,and 14.84% increase in network stability compared to baseline load balancing strategies like Fractional Improved Whale Social Optimization Based VM Migration Strategy FIWSOA,HDWOA,and Binary Bird Swap.展开更多
This paper focuses on the scheduling problem of workflow tasks that exhibit interdependencies.Unlike indepen-dent batch tasks,workflows typically consist of multiple subtasks with intrinsic correlations and dependenci...This paper focuses on the scheduling problem of workflow tasks that exhibit interdependencies.Unlike indepen-dent batch tasks,workflows typically consist of multiple subtasks with intrinsic correlations and dependencies.It necessitates the distribution of various computational tasks to appropriate computing node resources in accor-dance with task dependencies to ensure the smooth completion of the entire workflow.Workflow scheduling must consider an array of factors,including task dependencies,availability of computational resources,and the schedulability of tasks.Therefore,this paper delves into the distributed graph database workflow task scheduling problem and proposes a workflow scheduling methodology based on deep reinforcement learning(DRL).The method optimizes the maximum completion time(makespan)and response time of workflow tasks,aiming to enhance the responsiveness of workflow tasks while ensuring the minimization of the makespan.The experimental results indicate that the Q-learning Deep Reinforcement Learning(Q-DRL)algorithm markedly diminishes the makespan and refines the average response time within distributed graph database environments.In quantifying makespan,Q-DRL achieves mean reductions of 12.4%and 11.9%over established First-fit and Random scheduling strategies,respectively.Additionally,Q-DRL surpasses the performance of both DRL-Cloud and Improved Deep Q-learning Network(IDQN)algorithms,with improvements standing at 4.4%and 2.6%,respectively.With reference to average response time,the Q-DRL approach exhibits a significantly enhanced performance in the scheduling of workflow tasks,decreasing the average by 2.27%and 4.71%when compared to IDQN and DRL-Cloud,respectively.The Q-DRL algorithm also demonstrates a notable increase in the efficiency of system resource utilization,reducing the average idle rate by 5.02%and 9.30%in comparison to IDQN and DRL-Cloud,respectively.These findings support the assertion that Q-DRL not only upholds a lower average idle rate but also effectively curtails the average response time,thereby substantially improving processing efficiency and optimizing resource utilization within distributed graph database systems.展开更多
Unbalanced traffic distribution in cellular networks results in congestion and degrades spectrum efficiency.To tackle this problem,we propose an Unmanned Aerial Vehicle(UAV)-assisted wireless network in which the UAV ...Unbalanced traffic distribution in cellular networks results in congestion and degrades spectrum efficiency.To tackle this problem,we propose an Unmanned Aerial Vehicle(UAV)-assisted wireless network in which the UAV acts as an aerial relay to divert some traffic from the overloaded cell to its adjacent underloaded cell.To fully exploit its potential,we jointly optimize the UAV position,user association,spectrum allocation,and power allocation to maximize the sum-log-rate of all users in two adjacent cells.To tackle the complicated joint optimization problem,we first design a genetic-based algorithm to optimize the UAV position.Then,we simplify the problem by theoretical analysis and devise a low-complexity algorithm according to the branch-and-bound method,so as to obtain the optimal user association and spectrum allocation schemes.We further propose an iterative power allocation algorithm based on the sequential convex approximation theory.The simulation results indicate that the proposed UAV-assisted wireless network is superior to the terrestrial network in both utility and throughput,and the proposed algorithms can substantially improve the network performance in comparison with the other schemes.展开更多
Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led...Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led to a significant increase in the user demand for services.However,in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization.This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms.Specifically,metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic.In a cloud-based context,this paper describes load balancing measurements,including the benefits and drawbacks associated with the selected load balancing techniques.It also summarizes the algorithms based on implementation,time complexity,adaptability,associated issue(s),and targeted QoS parameters.Additionally,the analysis evaluates the tools and instruments utilized in each investigated study.Moreover,comparative analysis among static,traditional dynamic and metaheuristic algorithms based on response time by using the CloudSim simulation tool is also performed.Finally,the key open problems and potential directions for the state-of-the-art metaheuristic-based approaches are also addressed.展开更多
With the continuous expansion of the data center network scale, changing network requirements, and increasing pressure on network bandwidth, the traditional network architecture can no longer meet people’s needs. The...With the continuous expansion of the data center network scale, changing network requirements, and increasing pressure on network bandwidth, the traditional network architecture can no longer meet people’s needs. The development of software defined networks has brought new opportunities and challenges to future networks. The data and control separation characteristics of SDN improve the performance of the entire network. Researchers have integrated SDN architecture into data centers to improve network resource utilization and performance. This paper first introduces the basic concepts of SDN and data center networks. Then it discusses SDN-based load balancing mechanisms for data centers from different perspectives. Finally, it summarizes and looks forward to the study on SDN-based load balancing mechanisms and its development trend.展开更多
In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol...In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol for load transfer for load balancing. Groups are formed and every group has a node called a designated representative (DR). During load transferring processes, loads are transferred using the DR in each group to achieve load balancing purposes. The simulation results show that the performance of the protocol proposed is better than the compared conventional method. This protocol is more stable than the method without using the fuzzy logic control.展开更多
To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve ...To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others.展开更多
To improve data distribution efficiency a load-balancing data distribution LBDD method is proposed in publish/subscribe mode.In the LBDD method subscribers are involved in distribution tasks and data transfers while r...To improve data distribution efficiency a load-balancing data distribution LBDD method is proposed in publish/subscribe mode.In the LBDD method subscribers are involved in distribution tasks and data transfers while receiving data themselves.A dissemination tree is constructed among the subscribers based on MD5 where the publisher acts as the root. The proposed method provides bucket construction target selection and path updates furthermore the property of one-way dissemination is proven.That the average out-going degree of a node is 2 is guaranteed with the proposed LBDD.The experiments on data distribution delay data distribution rate and load distribution are conducted. Experimental results show that the LBDD method aids in shaping the task load between the publisher and subscribers and outperforms the point-to-point approach.展开更多
This paper focuses on solving a problem of improving system robustness and the efficiency of a distributed system at the same time. Fault tolerance with active replication and load balancing techniques are used. The p...This paper focuses on solving a problem of improving system robustness and the efficiency of a distributed system at the same time. Fault tolerance with active replication and load balancing techniques are used. The pros and cons of both techniques are analyzed, and a novel load balancing framework for fault tolerant systems with active replication is presented. Hierarchical architecture is described in detail. The framework can dynamically adjust fault tolerant groups and their memberships with respect to system loads. Three potential task scheduler group selection methods are proposed and simulation tests are made. Further analysis of test data is done and helpful observations for system design are also pointed out, including effects of task arrival intensity and task set size, relationship between total task execution time and single task execution time.展开更多
In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route...In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.展开更多
The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networ...The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture.展开更多
High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation ba...High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.展开更多
The working platforms supported with multiple extensible legs must be leveled before they come into operation.Although the supporting stiffness and reliability of the platform are improved with the increasing number o...The working platforms supported with multiple extensible legs must be leveled before they come into operation.Although the supporting stiffness and reliability of the platform are improved with the increasing number of the supporting legs,the increased overdetermination of the multi-leg platform systems leads to leveling coupling problem among legs and virtual leg problem in which some of the supporting legs bear zero or quasi zero loads.These problems make it quite complex and time consuming to level such a multi-leg platform.Based on rigid body kinematics,an approximate equation is formulated to rapidly calculate the leg extension for leveling a rigid platform,then a proportional speed control strategy is proposed to reduce the unexpected platform distortion and leveling coupling between supporting legs.Taking both the load coupling between supporting legs and the elastic flexibility of the working platform into consideration,an optimal balancing legs’ loads(OBLL) model is firstly put forward to deal with the traditional virtual leg problem.By taking advantage of the concept of supporting stiffness matrix,a coupling extension method(CEM) is developed to solve this OBLL problem for multi-leg flexible platform.At the end,with the concept of supporting stiffness matrix and static transmissibility matrix,an optimal load balancing leveling method is proposed to achieve geometric leveling and legs’ loads balancing simultaneously.Three numerical examples are given out to illustrate the performance of proposed methods.This paper proposes a method which can effectively quantify all of the legs’ extension at the same time,achieve geometric leveling and legs’ loads balancing simultaneously.By using the proposed methods,the stability,precision and efficiency of auto-leveling control process can be improved.展开更多
As an important part of satellite communication network,LEO satellite constellation network is one of the hot research directions.Since the nonuniform distribution of terrestrial services may cause inter-satellite lin...As an important part of satellite communication network,LEO satellite constellation network is one of the hot research directions.Since the nonuniform distribution of terrestrial services may cause inter-satellite link congestion,improving network load balancing performance has become one of the key issues that need to be solved for routing algorithms in LEO network.Therefore,by expanding the range of available paths and combining the congestion avoidance mechanism,a load balancing routing algorithm based on extended link states in LEO constellation network is proposed.Simulation results show that the algorithm achieves a balanced distribution of traffic load,reduces link congestion and packet loss rate,and improves throughput of LEO satellite network.展开更多
To deal with the dynamic and imbalanced traffic requirements in Low Earth Orbit satellite networks, several distributed load balancing routing schemes have been proposed. However, because of the lack of global view, t...To deal with the dynamic and imbalanced traffic requirements in Low Earth Orbit satellite networks, several distributed load balancing routing schemes have been proposed. However, because of the lack of global view, these schemes may lead to cascading congestion in regions with high volume of traffic. To solve this problem, a Hybrid-Traffic-Detour based Load Balancing Routing(HLBR) scheme is proposed, where a Long-Distance Traffic Detour(LTD) method is devised and coordinates with distributed traffic detour method to perform self-adaptive load balancing. The forwarding path of LTD is acquired by the Circuitous Multipath Calculation(CMC) based on prior geographical information, and activated by the LTDShift-Trigger(LST) through real-time congestion perception. Simulation results show that the HLBR can mitigate cascading congestion and achieve efficient traffic distribution.展开更多
One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consider...One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.展开更多
Software Defined Networking(SDN) provides flexible network management by decoupling control plane from data plane. And multiple controllers are deployed to improve the scalability and reliability of the control plane,...Software Defined Networking(SDN) provides flexible network management by decoupling control plane from data plane. And multiple controllers are deployed to improve the scalability and reliability of the control plane, which could divide the network into several subdomains with separate controllers. However, such deployment introduces a new problem of controller load imbalance due to the dynamic traffic and the static configuration between switches and controllers. To address this issue, this paper proposes a Distribution Decision Mechanism(DDM) based on switch migration in the multiple subdomains SDN network. Firstly, through collecting network information, it constructs distributed migration decision fields based on the controller load condition. Then we choose the migrating switches according to the selection probability, and the target controllers are determined by integrating three network costs, including data collection, switch migration and controller state synchronization. Finally, we set the migrating countdown to achieve the ordered switch migration. Through verifying several evaluation indexes, results show that the proposed mechanism can achieve controller load balancing with better performance.展开更多
In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The appro...In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The approach of using the SDN technology in the current task scheduling flexibility, accomplish real-time monitoring of the service node flow and load condition by the OpenFlow protocol. When the load of system is imbalanced, the controller can allocate globally network resources. What's more, by using dynamic correction, the load of the system is not obvious tilt in the long run. The results of simulation show that this approach can realize and ensure that the load will not tilt over a long period of time, and improve the system throughput.展开更多
基金supported by the National Key Research and Development Program of China under Grant No.2022YFB2902501the Fundamental Research Funds for the Central Universities under Grant No.2023ZCJH09the Haidian District Golden Bridge Seed Fund of Beijing Municipality under Grant No.S2024161.
文摘In recent years,load balancing routing al-gorithms have been extensively studied in satellite net-works.Most existing studies focus on path selection and hop-count optimization for end-to-end transmis-sion,while overlooking congestion issues on feeder links caused by the limited number and centralized distribution of ground stations.Hence,a multi-service routing algorithm called the Multi-service Load Bal-ancing Routing Algorithm for Traffic Return(MLB-TR)is proposed.Unlike traditional approaches,MLB-TR aims to achieve a broader and more comprehensive load balancing objective.Specifically,based on the service type,an appropriate landing satellite is first selected by considering factors such as shortest path hop count and satellite load.Then,a set of candidate paths from the source satellite to the selected landing satellite is computed.Finally,using the regional load balancing index as the optimization objective,the final transmission path is selected from the candidate path set.Simulation results show that the proposed algo-rithm outperforms the existing works.
文摘In deep drilling applications,such as those for geothermal energy,there are many challenges,such as those related to efficient operation of the drilling fluid(mud)pumping system.Legacy drilling rigs often use paired,parallel-connected independent-excitation direct-current(DC)motors for mud pumps,that are supplied by a single power converter.This configuration results in electrical power imbalance,thus reducing its efficiency.This paper investigates this power imbalance issue in such legacy DC mud pump drive systems and offers an innovative solution in the form of a closed-loop control system for electrical load balancing.The paper first analyzes the drilling fluid circulation and electrical drive layout to develop an analytical model that can be used for electrical load balancing and related energy efficiency improvements.Based on this analysis,a feedback control system(so-called“current mirror”control system)is designed to balance the electrical load(i.e.,armature currents)of parallel-connected DC machines by adjusting the excitation current of one of the DC machines,thus mitigating the power imbalance of the electrical drive.Theproposed control systemeffectiveness has been validated,first through simulations,followed by experimental testing on a deep drilling rig during commissioning and field tests.The results demonstrate the practical viability of the proposed“current mirror”control system that can effectively and rather quickly equalize the armature currents of both DC machines in a parallel-connected electrical drive,and thus balance both the electrical and mechanical load of individual DC machines under realistic operating conditions of the mud pump electrical drive.
文摘The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is needed.Possible load balancing is needed to overcome user task execution delay and system failure.Most swarm intelligent dynamic load balancing solutions that used hybrid metaheuristic algorithms failed to balance exploitation and exploration.Most load balancing methods were insufficient to handle the growing uncertainty in job distribution to VMs.Thus,the Hybrid Spotted Hyena and Whale Optimization Algorithm-based Dynamic Load Balancing Mechanism(HSHWOA) partitions traffic among numerous VMs or servers to guarantee user chores are completed quickly.This load balancing approach improved performance by considering average network latency,dependability,and throughput.This hybridization of SHOA and WOA aims to improve the trade-off between exploration and exploitation,assign jobs to VMs with more solution diversity,and prevent the solution from reaching a local optimality.Pysim-based experimental verification and testing for the proposed HSHWOA showed a 12.38% improvement in minimized makespan,16.21% increase in mean throughput,and 14.84% increase in network stability compared to baseline load balancing strategies like Fractional Improved Whale Social Optimization Based VM Migration Strategy FIWSOA,HDWOA,and Binary Bird Swap.
基金funded by the Science and Technology Foundation of State Grid Corporation of China(Grant No.5108-202218280A-2-397-XG).
文摘This paper focuses on the scheduling problem of workflow tasks that exhibit interdependencies.Unlike indepen-dent batch tasks,workflows typically consist of multiple subtasks with intrinsic correlations and dependencies.It necessitates the distribution of various computational tasks to appropriate computing node resources in accor-dance with task dependencies to ensure the smooth completion of the entire workflow.Workflow scheduling must consider an array of factors,including task dependencies,availability of computational resources,and the schedulability of tasks.Therefore,this paper delves into the distributed graph database workflow task scheduling problem and proposes a workflow scheduling methodology based on deep reinforcement learning(DRL).The method optimizes the maximum completion time(makespan)and response time of workflow tasks,aiming to enhance the responsiveness of workflow tasks while ensuring the minimization of the makespan.The experimental results indicate that the Q-learning Deep Reinforcement Learning(Q-DRL)algorithm markedly diminishes the makespan and refines the average response time within distributed graph database environments.In quantifying makespan,Q-DRL achieves mean reductions of 12.4%and 11.9%over established First-fit and Random scheduling strategies,respectively.Additionally,Q-DRL surpasses the performance of both DRL-Cloud and Improved Deep Q-learning Network(IDQN)algorithms,with improvements standing at 4.4%and 2.6%,respectively.With reference to average response time,the Q-DRL approach exhibits a significantly enhanced performance in the scheduling of workflow tasks,decreasing the average by 2.27%and 4.71%when compared to IDQN and DRL-Cloud,respectively.The Q-DRL algorithm also demonstrates a notable increase in the efficiency of system resource utilization,reducing the average idle rate by 5.02%and 9.30%in comparison to IDQN and DRL-Cloud,respectively.These findings support the assertion that Q-DRL not only upholds a lower average idle rate but also effectively curtails the average response time,thereby substantially improving processing efficiency and optimizing resource utilization within distributed graph database systems.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1807003in part by the National Natural Science Foundation of China under Grants 61901381,62171385,and 61901378+3 种基金in part by the Aeronautical Science Foundation of China under Grant 2020z073053004in part by the Foundation of the State Key Laboratory of Integrated Services Networks of Xidian University under Grant ISN21-06in part by the Key Research Program and Industrial Innovation Chain Project of Shaanxi Province under Grant 2019ZDLGY07-10in part by the Natural Science Fundamental Research Program of Shaanxi Province under Grant 2021JM-069.
文摘Unbalanced traffic distribution in cellular networks results in congestion and degrades spectrum efficiency.To tackle this problem,we propose an Unmanned Aerial Vehicle(UAV)-assisted wireless network in which the UAV acts as an aerial relay to divert some traffic from the overloaded cell to its adjacent underloaded cell.To fully exploit its potential,we jointly optimize the UAV position,user association,spectrum allocation,and power allocation to maximize the sum-log-rate of all users in two adjacent cells.To tackle the complicated joint optimization problem,we first design a genetic-based algorithm to optimize the UAV position.Then,we simplify the problem by theoretical analysis and devise a low-complexity algorithm according to the branch-and-bound method,so as to obtain the optimal user association and spectrum allocation schemes.We further propose an iterative power allocation algorithm based on the sequential convex approximation theory.The simulation results indicate that the proposed UAV-assisted wireless network is superior to the terrestrial network in both utility and throughput,and the proposed algorithms can substantially improve the network performance in comparison with the other schemes.
文摘Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led to a significant increase in the user demand for services.However,in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization.This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms.Specifically,metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic.In a cloud-based context,this paper describes load balancing measurements,including the benefits and drawbacks associated with the selected load balancing techniques.It also summarizes the algorithms based on implementation,time complexity,adaptability,associated issue(s),and targeted QoS parameters.Additionally,the analysis evaluates the tools and instruments utilized in each investigated study.Moreover,comparative analysis among static,traditional dynamic and metaheuristic algorithms based on response time by using the CloudSim simulation tool is also performed.Finally,the key open problems and potential directions for the state-of-the-art metaheuristic-based approaches are also addressed.
文摘With the continuous expansion of the data center network scale, changing network requirements, and increasing pressure on network bandwidth, the traditional network architecture can no longer meet people’s needs. The development of software defined networks has brought new opportunities and challenges to future networks. The data and control separation characteristics of SDN improve the performance of the entire network. Researchers have integrated SDN architecture into data centers to improve network resource utilization and performance. This paper first introduces the basic concepts of SDN and data center networks. Then it discusses SDN-based load balancing mechanisms for data centers from different perspectives. Finally, it summarizes and looks forward to the study on SDN-based load balancing mechanisms and its development trend.
文摘In this paper, a sender-initiated protocol is applied which uses fuzzy logic control method to improve computer networks performance by balancing loads among computers. This new model devises sender-initiated protocol for load transfer for load balancing. Groups are formed and every group has a node called a designated representative (DR). During load transferring processes, loads are transferred using the DR in each group to achieve load balancing purposes. The simulation results show that the performance of the protocol proposed is better than the compared conventional method. This protocol is more stable than the method without using the fuzzy logic control.
基金The National Natural Science Foundation of China(No.69973007).
文摘To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others.
基金The National Key Basic Research Program of China(973 Program)
文摘To improve data distribution efficiency a load-balancing data distribution LBDD method is proposed in publish/subscribe mode.In the LBDD method subscribers are involved in distribution tasks and data transfers while receiving data themselves.A dissemination tree is constructed among the subscribers based on MD5 where the publisher acts as the root. The proposed method provides bucket construction target selection and path updates furthermore the property of one-way dissemination is proven.That the average out-going degree of a node is 2 is guaranteed with the proposed LBDD.The experiments on data distribution delay data distribution rate and load distribution are conducted. Experimental results show that the LBDD method aids in shaping the task load between the publisher and subscribers and outperforms the point-to-point approach.
文摘This paper focuses on solving a problem of improving system robustness and the efficiency of a distributed system at the same time. Fault tolerance with active replication and load balancing techniques are used. The pros and cons of both techniques are analyzed, and a novel load balancing framework for fault tolerant systems with active replication is presented. Hierarchical architecture is described in detail. The framework can dynamically adjust fault tolerant groups and their memberships with respect to system loads. Three potential task scheduler group selection methods are proposed and simulation tests are made. Further analysis of test data is done and helpful observations for system design are also pointed out, including effects of task arrival intensity and task set size, relationship between total task execution time and single task execution time.
基金supported by the State Grid project which names the simulation and service quality evaluation technology research of power communication network(No.XX71-14-046)
文摘In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.
基金supported in part by National Natural Science Foundation of China (No.61401331,No.61401328)111 Project in Xidian University of China(B08038)+2 种基金Hong Kong,Macao and Taiwan Science and Technology Cooperation Special Project (2014DFT10320,2015DFT10160)The National Science and Technology Major Project of the Ministry of Science and Technology of China(2015zx03002006-003)FundamentalResearch Funds for the Central Universities (20101155739)
文摘The Internet of Vehicles(IoV)has been widely researched in recent years,and cloud computing has been one of the key technologies in the IoV.Although cloud computing provides high performance compute,storage and networking services,the IoV still suffers with high processing latency,less mobility support and location awareness.In this paper,we integrate fog computing and software defined networking(SDN) to address those problems.Fog computing extends computing and storing to the edge of the network,which could decrease latency remarkably in addition to enable mobility support and location awareness.Meanwhile,SDN provides flexible centralized control and global knowledge to the network.In order to apply the software defined cloud/fog networking(SDCFN) architecture in the IoV effectively,we propose a novel SDN-based modified constrained optimization particle swarm optimization(MPSO-CO) algorithm which uses the reverse of the flight of mutation particles and linear decrease inertia weight to enhance the performance of constrained optimization particle swarm optimization(PSO-CO).The simulation results indicate that the SDN-based MPSO-CO algorithm could effectively decrease the latency and improve the quality of service(QoS) in the SDCFN architecture.
基金supported by National Science and Technology Support Program of China (Grant No. 2012BAF15G00)
文摘High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.
基金supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2010EL003)
文摘The working platforms supported with multiple extensible legs must be leveled before they come into operation.Although the supporting stiffness and reliability of the platform are improved with the increasing number of the supporting legs,the increased overdetermination of the multi-leg platform systems leads to leveling coupling problem among legs and virtual leg problem in which some of the supporting legs bear zero or quasi zero loads.These problems make it quite complex and time consuming to level such a multi-leg platform.Based on rigid body kinematics,an approximate equation is formulated to rapidly calculate the leg extension for leveling a rigid platform,then a proportional speed control strategy is proposed to reduce the unexpected platform distortion and leveling coupling between supporting legs.Taking both the load coupling between supporting legs and the elastic flexibility of the working platform into consideration,an optimal balancing legs’ loads(OBLL) model is firstly put forward to deal with the traditional virtual leg problem.By taking advantage of the concept of supporting stiffness matrix,a coupling extension method(CEM) is developed to solve this OBLL problem for multi-leg flexible platform.At the end,with the concept of supporting stiffness matrix and static transmissibility matrix,an optimal load balancing leveling method is proposed to achieve geometric leveling and legs’ loads balancing simultaneously.Three numerical examples are given out to illustrate the performance of proposed methods.This paper proposes a method which can effectively quantify all of the legs’ extension at the same time,achieve geometric leveling and legs’ loads balancing simultaneously.By using the proposed methods,the stability,precision and efficiency of auto-leveling control process can be improved.
基金supported by the National Natural Science Foundation of China(No.6217011238 and No.61931011).
文摘As an important part of satellite communication network,LEO satellite constellation network is one of the hot research directions.Since the nonuniform distribution of terrestrial services may cause inter-satellite link congestion,improving network load balancing performance has become one of the key issues that need to be solved for routing algorithms in LEO network.Therefore,by expanding the range of available paths and combining the congestion avoidance mechanism,a load balancing routing algorithm based on extended link states in LEO constellation network is proposed.Simulation results show that the algorithm achieves a balanced distribution of traffic load,reduces link congestion and packet loss rate,and improves throughput of LEO satellite network.
基金supported by the National Science Foundation of China(No.61472189)Zhejiang Provincial Natural Science Foundation of China(No.LY18F030015)Wenzhou Public Welfare Science and Technology Project of China(No.G20150015)
文摘To deal with the dynamic and imbalanced traffic requirements in Low Earth Orbit satellite networks, several distributed load balancing routing schemes have been proposed. However, because of the lack of global view, these schemes may lead to cascading congestion in regions with high volume of traffic. To solve this problem, a Hybrid-Traffic-Detour based Load Balancing Routing(HLBR) scheme is proposed, where a Long-Distance Traffic Detour(LTD) method is devised and coordinates with distributed traffic detour method to perform self-adaptive load balancing. The forwarding path of LTD is acquired by the Circuitous Multipath Calculation(CMC) based on prior geographical information, and activated by the LTDShift-Trigger(LST) through real-time congestion perception. Simulation results show that the HLBR can mitigate cascading congestion and achieve efficient traffic distribution.
基金supported by Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry under Grant No.2010-2011 and Chinese Post-doctoral Research Foundation
文摘One of the challenging scheduling problems in Cloud data centers is to take the allocation and migration of reconfigurable virtual machines as well as the integrated features of hosting physical machines into consideration. We introduce a Dynamic and Integrated Resource Scheduling algorithm (DAIRS) for Cloud data centers. Unlike traditional load-balance scheduling algorithms which often consider only one factor such as the CPU load in physical servers, DAIRS treats CPU, memory and network bandwidth integrated for both physical machines and virtual machines. We develop integrated measurement for the total imbalance level of a Cloud datacenter as well as the average imbalance level of each server. Simulation results show that DAIRS has good performance with regard to total imbalance level, average imbalance level of each server, as well as overall running time.
基金supported in part by This work is supported by the Project of National Network Cyberspace Security(Grant No.2017YFB0803204)the National High-Tech Research and Development Program of China(863 Program)(Grant No.2015AA016102)+1 种基金Foundation for Innovative Research Group of the National Natural Science Foundation of China(Grant No.61521003)Foundation for the National Natural Science Foundation of China(Grant No.61502530)
文摘Software Defined Networking(SDN) provides flexible network management by decoupling control plane from data plane. And multiple controllers are deployed to improve the scalability and reliability of the control plane, which could divide the network into several subdomains with separate controllers. However, such deployment introduces a new problem of controller load imbalance due to the dynamic traffic and the static configuration between switches and controllers. To address this issue, this paper proposes a Distribution Decision Mechanism(DDM) based on switch migration in the multiple subdomains SDN network. Firstly, through collecting network information, it constructs distributed migration decision fields based on the controller load condition. Then we choose the migrating switches according to the selection probability, and the target controllers are determined by integrating three network costs, including data collection, switch migration and controller state synchronization. Finally, we set the migrating countdown to achieve the ordered switch migration. Through verifying several evaluation indexes, results show that the proposed mechanism can achieve controller load balancing with better performance.
基金supported by the National Natural Science Foundation of China(No.61163058No.61201250 and No.61363006)Guangxi Key Laboratory of Trusted Software(No.KX201306)
文摘In order to balancing based on data achieve dynamic load flow level, in this paper, we apply SDN technology to the cloud data center, and propose a dynamic load balancing method of cloud center based on SDN. The approach of using the SDN technology in the current task scheduling flexibility, accomplish real-time monitoring of the service node flow and load condition by the OpenFlow protocol. When the load of system is imbalanced, the controller can allocate globally network resources. What's more, by using dynamic correction, the load of the system is not obvious tilt in the long run. The results of simulation show that this approach can realize and ensure that the load will not tilt over a long period of time, and improve the system throughput.