The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-...The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.展开更多
This paper proposes a novel numerical solution approach for the kinematic shakedown analysis of strain-hardening thin plates using the C^(1)nodal natural element method(C^(1)nodal NEM).Based on Koiter’s theorem and t...This paper proposes a novel numerical solution approach for the kinematic shakedown analysis of strain-hardening thin plates using the C^(1)nodal natural element method(C^(1)nodal NEM).Based on Koiter’s theorem and the von Mises and two-surface yield criteria,a nonlinear mathematical programming formulation is constructed for the kinematic shakedown analysis of strain-hardening thin plates,and the C^(1)nodal NEM is adopted for discretization.Additionally,König’s theory is used to deal with time integration by treating the generalized plastic strain increment at each load vertex.A direct iterative method is developed to linearize and solve this formulation by modifying the relevant objective function and equality constraints at each iteration.Kinematic shakedown load factors are directly calculated in a monotonically converging manner.Numerical examples validate the accuracy and convergence of the developed method and illustrate the influences of limited and unlimited strain-hardening models on the kinematic shakedown load factors of thin square and circular plates.展开更多
SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 co...SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 code named STELLA is developed and verified at SNERDI (Shanghai Nuclear Engineering Research and Design Institute). For SP3 method, neutron transport equation can be transformed into two coupled equations in the same mathematical form as diffusion equation. In this work, SANM (semi-analytic nodal method) is used to solve diffusion-like equation, due to its easy to handle multi-group problem. Whole core nodal boundary net current coupling is used to improve convergence stability in SANM, instead of solving two-node problem. CMFD (coarse-mesh finite difference) acceleration method is employed for 0-th SP3 equation, which represents the neutron balance relationship. Three benchmarks are used to verify the SP3 code, STELLA. The first one is a self-defined one dimensional problem, which demonstrates SP3 method is extremely accurate, due to no academic approximation in one dimensional for SP3. The second one is a two dimensional one-group problem cited from Larsen's paper, which is usually used to verify and prove the SP3 code correct and accurate. And the third one is modified from 2D C5G7-MOX benchmark, whose numerical results indicate that STELLA is accurate and efficient in pin size level, compared to diffusion model.展开更多
In this paper, we prove the convergence of the nodal expansion method, a new numerical method for partial differential equations and provide the error estimates of approximation solution.
A nodal discontinuous Galerkin formulation based on Lagrange polynomials basis is used to simulate the acoustic wave propagation. Its dispersion and dissipation properties for the advection equation are investigated b...A nodal discontinuous Galerkin formulation based on Lagrange polynomials basis is used to simulate the acoustic wave propagation. Its dispersion and dissipation properties for the advection equation are investigated by utilizing an eigenvalue analysis. Two test problems of wave propagation with initial disturbance consisting of a Gaussian profile or rectangular pulse are performed. And the performance of the schemes in short,intermediate,and long waves is evaluated. Moreover,numerical results between the nodal discontinuous Galerkin method and finite difference type schemes are compared,which indicate that the numerical solution obtained using nodal discontinuous Galerkin method with a pure central flux has obviously high frequency oscillations for initial disturbance consisting of a rectangular pulse,which is the same as those obtained using finite difference type schemes without artificial selective damping. When an upwind flux is adopted,spurious waves are eliminated effectively except for the location of discontinuities. When a limiter is used,the spurious short waves are almost completely removed. Therefore,the quality of the computed solution has improved.展开更多
In molten salt reactors(MSRs),the liquid fuel salt circulates through the primary loop and a part of the delayed neutron precursors(DNPs)decays outside the reactor core.To model and analyze the flow field effect of DN...In molten salt reactors(MSRs),the liquid fuel salt circulates through the primary loop and a part of the delayed neutron precursors(DNPs)decays outside the reactor core.To model and analyze the flow field effect of DNPs in channel-type liquid-fueled MSRs,a three-dimensional space-time dynamics code,named ThorCORE3D,that couples neutronics,core thermalhydraulics,and a molten salt loop system was developed and validated with the Molten Salt Reactor Experiment(MSRE)benchmarks.The effects of external loop recirculation time,fuel flow rate,and core flow field distribution on the delayed neutron fraction loss of MSRE at steadystate were modeled and simulated using the ThorCORE3D code.Then,the flow field effect of the DNPs on the system responses of the MSRE in the reactivity insertion transient under different initial conditions was analyzed systematically for the channel-type liquid-fueled MSRs.The results indicate that the flow field condition has a significant effect on the steady-state delayed neutron fractions and will further affect the transient power and temperature responses of the reactor system.The analysis results for the effect of the DNP flow field can provide important references for the design optimization and safety analysis of liquid-fueled MSRs.展开更多
Based on sixteen nullor-mirror models of the voltage differencing transconductance amplifier (VDTA) and port admittance matrices of the tow-Thomas (T-T) filter with orthogonal control between the characteristic freque...Based on sixteen nullor-mirror models of the voltage differencing transconductance amplifier (VDTA) and port admittance matrices of the tow-Thomas (T-T) filter with orthogonal control between the characteristic frequency(f_0) and figure of merit (Q),two different categories of the voltage-mode and transconductance-mode T-T filters are synthesized by the means of the nodal admittance matrix (NAM) expansion method.The category A filter that employs two compressive VDTAs and two grounded capacitors includes four structures,and the category B filter that uses two compressive VDTAs,two grounded capacitors,and one grounded resistor,also includes four structures.These circuits are suitable for integrated circuit manufacture,and their parameters f_0 and Q can be orthogonally adjusted with varying the bias currents of VDTAs.After the paper and pencil test is completed,the computer analyses,including alternating current (AC),parameter sweep,Monte Carlo (MC),and noise analyses,are performed to support the synthesis approach.展开更多
In this work, a numerical study of heat transfers in a metallic pressure cooker isolated with kapok wool was carried out. This equipment works like a thermos, allowing finishing cooking meals only thanks to the heat s...In this work, a numerical study of heat transfers in a metallic pressure cooker isolated with kapok wool was carried out. This equipment works like a thermos, allowing finishing cooking meals only thanks to the heat stored at the beginning of cooking, which generates energy savings. Cooked meals are also kept hot for long hours. In our previous work, we have highlighted the performances of the pressure cooker when making common dishes in Burkina Faso. Also, the parameters (thickness and density) of the insulating matrix allowing having such performances as well as the influence of the climatic conditions on the pressure cooker operation were analyzed in detail in this present work. The numerical methodology is based on the nodal method and the transfer equations obtained by making an energy balance on each node have been discretized using an implicit scheme with finite differences and resolved by the Gauss algorithm. Numerical results validated experimentally show that the thickness of the kapok wool as well as its density play an important role in the pressure cooker operation. In addition, equipment performances are very little influenced by the weather conditions of the city of Ouagadougou (Burkina Faso).展开更多
This work concerns an experimental and numerical study of energy losses in a typical oven usually used in the agro-food craft sector in Burkina Faso. The experimental results were obtained by infrared thermography of ...This work concerns an experimental and numerical study of energy losses in a typical oven usually used in the agro-food craft sector in Burkina Faso. The experimental results were obtained by infrared thermography of the oven and by monitoring the evolution of the wall temperatures using thermocouples connected to a data acquisition system. These results indicate that the energy losses are mainly through the walls of the oven. The numerical study based on the energy balance and corroborated by the experimental study made it possible to quantify these losses of energy which represents almost half of the fuel used. These results will allow us to work on a new, more efficient oven model for the grilling sector in Burkina Faso.展开更多
The concept of a space solar power station(SSPS)was proposed in 1968 as a potential approach for solving the energy crisis.In the past 50 years,several structural concepts have been proposed,but none have been sent in...The concept of a space solar power station(SSPS)was proposed in 1968 as a potential approach for solving the energy crisis.In the past 50 years,several structural concepts have been proposed,but none have been sent into orbit.One of the main challenges of the SSPS is dynamic behavior prediction,which can supply the necessary information for control strategy design.The ultra-large size of the SSPS causes difficulties in its dynamic analysis,such as the ultra-low vibration frequency and large fexibility.In this paper,four approaches for the numerical analysis of the dynamic problems associated with the SSPS are reviewed:the finite element,absolute nodal coordinate,foating frame formulation,and structure-preserving methods.Both the merits and shortcomings of the above four approaches are introduced when they are employed in dynamic problems associated with the SSPS.Synthesizing the merits of the aforementioned four approaches,we believe that embedding the structure-preserving method into finite element software may be an effective way to perform a numerical analysis of the dynamic problems associated with the SSPS.展开更多
基金supported by the National Key Research and Development Program of China(No.2020YFB1901900)the National Natural Science Foundation of China(Nos.U20B2011,12175138)the Shanghai Rising-Star Program。
文摘The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.
基金supported by the Chinese Postdoctoral Science Foundation(2013M540934).
文摘This paper proposes a novel numerical solution approach for the kinematic shakedown analysis of strain-hardening thin plates using the C^(1)nodal natural element method(C^(1)nodal NEM).Based on Koiter’s theorem and the von Mises and two-surface yield criteria,a nonlinear mathematical programming formulation is constructed for the kinematic shakedown analysis of strain-hardening thin plates,and the C^(1)nodal NEM is adopted for discretization.Additionally,König’s theory is used to deal with time integration by treating the generalized plastic strain increment at each load vertex.A direct iterative method is developed to linearize and solve this formulation by modifying the relevant objective function and equality constraints at each iteration.Kinematic shakedown load factors are directly calculated in a monotonically converging manner.Numerical examples validate the accuracy and convergence of the developed method and illustrate the influences of limited and unlimited strain-hardening models on the kinematic shakedown load factors of thin square and circular plates.
文摘SP3 (simplified P3) theory is widely used in LWR (light water reactor) analyses to partly capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this paper, a SP3 code named STELLA is developed and verified at SNERDI (Shanghai Nuclear Engineering Research and Design Institute). For SP3 method, neutron transport equation can be transformed into two coupled equations in the same mathematical form as diffusion equation. In this work, SANM (semi-analytic nodal method) is used to solve diffusion-like equation, due to its easy to handle multi-group problem. Whole core nodal boundary net current coupling is used to improve convergence stability in SANM, instead of solving two-node problem. CMFD (coarse-mesh finite difference) acceleration method is employed for 0-th SP3 equation, which represents the neutron balance relationship. Three benchmarks are used to verify the SP3 code, STELLA. The first one is a self-defined one dimensional problem, which demonstrates SP3 method is extremely accurate, due to no academic approximation in one dimensional for SP3. The second one is a two dimensional one-group problem cited from Larsen's paper, which is usually used to verify and prove the SP3 code correct and accurate. And the third one is modified from 2D C5G7-MOX benchmark, whose numerical results indicate that STELLA is accurate and efficient in pin size level, compared to diffusion model.
基金This project is supported by the National Science Foundation of China
文摘In this paper, we prove the convergence of the nodal expansion method, a new numerical method for partial differential equations and provide the error estimates of approximation solution.
基金Supported by the National Natural Science Foundation of China(51106099,50976072)the Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50501)
文摘A nodal discontinuous Galerkin formulation based on Lagrange polynomials basis is used to simulate the acoustic wave propagation. Its dispersion and dissipation properties for the advection equation are investigated by utilizing an eigenvalue analysis. Two test problems of wave propagation with initial disturbance consisting of a Gaussian profile or rectangular pulse are performed. And the performance of the schemes in short,intermediate,and long waves is evaluated. Moreover,numerical results between the nodal discontinuous Galerkin method and finite difference type schemes are compared,which indicate that the numerical solution obtained using nodal discontinuous Galerkin method with a pure central flux has obviously high frequency oscillations for initial disturbance consisting of a rectangular pulse,which is the same as those obtained using finite difference type schemes without artificial selective damping. When an upwind flux is adopted,spurious waves are eliminated effectively except for the location of discontinuities. When a limiter is used,the spurious short waves are almost completely removed. Therefore,the quality of the computed solution has improved.
基金supported by Strategic Pilot Science and Technology Project of Chinese Academy of Sciences (No. XD02001005)
文摘In molten salt reactors(MSRs),the liquid fuel salt circulates through the primary loop and a part of the delayed neutron precursors(DNPs)decays outside the reactor core.To model and analyze the flow field effect of DNPs in channel-type liquid-fueled MSRs,a three-dimensional space-time dynamics code,named ThorCORE3D,that couples neutronics,core thermalhydraulics,and a molten salt loop system was developed and validated with the Molten Salt Reactor Experiment(MSRE)benchmarks.The effects of external loop recirculation time,fuel flow rate,and core flow field distribution on the delayed neutron fraction loss of MSRE at steadystate were modeled and simulated using the ThorCORE3D code.Then,the flow field effect of the DNPs on the system responses of the MSRE in the reactivity insertion transient under different initial conditions was analyzed systematically for the channel-type liquid-fueled MSRs.The results indicate that the flow field condition has a significant effect on the steady-state delayed neutron fractions and will further affect the transient power and temperature responses of the reactor system.The analysis results for the effect of the DNP flow field can provide important references for the design optimization and safety analysis of liquid-fueled MSRs.
基金supported by the Natural Science Foundation of Shaanxi Province,China under Grant No. 2017JM6087。
文摘Based on sixteen nullor-mirror models of the voltage differencing transconductance amplifier (VDTA) and port admittance matrices of the tow-Thomas (T-T) filter with orthogonal control between the characteristic frequency(f_0) and figure of merit (Q),two different categories of the voltage-mode and transconductance-mode T-T filters are synthesized by the means of the nodal admittance matrix (NAM) expansion method.The category A filter that employs two compressive VDTAs and two grounded capacitors includes four structures,and the category B filter that uses two compressive VDTAs,two grounded capacitors,and one grounded resistor,also includes four structures.These circuits are suitable for integrated circuit manufacture,and their parameters f_0 and Q can be orthogonally adjusted with varying the bias currents of VDTAs.After the paper and pencil test is completed,the computer analyses,including alternating current (AC),parameter sweep,Monte Carlo (MC),and noise analyses,are performed to support the synthesis approach.
基金the Embassy of France in Burkina Faso,the National Research Fund for Innovation and Development(FONRID)and the International Science Program(ISP)of UPPSALA University for their financial support which allowed the realization of this work.
文摘In this work, a numerical study of heat transfers in a metallic pressure cooker isolated with kapok wool was carried out. This equipment works like a thermos, allowing finishing cooking meals only thanks to the heat stored at the beginning of cooking, which generates energy savings. Cooked meals are also kept hot for long hours. In our previous work, we have highlighted the performances of the pressure cooker when making common dishes in Burkina Faso. Also, the parameters (thickness and density) of the insulating matrix allowing having such performances as well as the influence of the climatic conditions on the pressure cooker operation were analyzed in detail in this present work. The numerical methodology is based on the nodal method and the transfer equations obtained by making an energy balance on each node have been discretized using an implicit scheme with finite differences and resolved by the Gauss algorithm. Numerical results validated experimentally show that the thickness of the kapok wool as well as its density play an important role in the pressure cooker operation. In addition, equipment performances are very little influenced by the weather conditions of the city of Ouagadougou (Burkina Faso).
文摘This work concerns an experimental and numerical study of energy losses in a typical oven usually used in the agro-food craft sector in Burkina Faso. The experimental results were obtained by infrared thermography of the oven and by monitoring the evolution of the wall temperatures using thermocouples connected to a data acquisition system. These results indicate that the energy losses are mainly through the walls of the oven. The numerical study based on the energy balance and corroborated by the experimental study made it possible to quantify these losses of energy which represents almost half of the fuel used. These results will allow us to work on a new, more efficient oven model for the grilling sector in Burkina Faso.
基金supported by the National Natural Science Foundation of China(12172281,11972284,11672241,11432010,and 11872303)Fund for Distinguished Young Scholars of Shaanxi Province(2019JC-29)+2 种基金Foundation Strengthening Program Technical Area Fund(2021-JCJQ-JJ-0565)Fund of the Science and Technology Innovation Team of Shaanxi(2022TD-61)Fund of the Youth Innovation Team of Shaanxi Universities.
文摘The concept of a space solar power station(SSPS)was proposed in 1968 as a potential approach for solving the energy crisis.In the past 50 years,several structural concepts have been proposed,but none have been sent into orbit.One of the main challenges of the SSPS is dynamic behavior prediction,which can supply the necessary information for control strategy design.The ultra-large size of the SSPS causes difficulties in its dynamic analysis,such as the ultra-low vibration frequency and large fexibility.In this paper,four approaches for the numerical analysis of the dynamic problems associated with the SSPS are reviewed:the finite element,absolute nodal coordinate,foating frame formulation,and structure-preserving methods.Both the merits and shortcomings of the above four approaches are introduced when they are employed in dynamic problems associated with the SSPS.Synthesizing the merits of the aforementioned four approaches,we believe that embedding the structure-preserving method into finite element software may be an effective way to perform a numerical analysis of the dynamic problems associated with the SSPS.