AIM: To investigate the effect of different dietary fatty acids on hepatic inflammasome activation.METHODS: Wild-type C57BL/6 mice were fed either a high-fat diet or polyunsaturated fatty acid (PUFA)-enriched diet. Pr...AIM: To investigate the effect of different dietary fatty acids on hepatic inflammasome activation.METHODS: Wild-type C57BL/6 mice were fed either a high-fat diet or polyunsaturated fatty acid (PUFA)-enriched diet. Primary hepatocytes were treated with either saturated fatty acids (SFAs) or PUFAs as well as combined with lipopolysaccharide (LPS). The expression of NOD-like receptor protein 3 (NLRP3) inflammasome, peroxisome proliferator-activated receptor-γ and nuclear factor-kappa B (NF-κB) was determined by real-time PCR and Western blot. The activity of Caspase-1 and interleukine-1β production were measured.RESULTS: High-fat diet-induced hepatic steatosis was sufficient to induce and activate hepatic NLRP3 inflammasome. SFA palmitic acid (PA) directly activated NLRP3 inflammasome and increased sensitization to LPS-induced inflammasome activation in hepatocytes. In contrast, PUFA docosahexaenoic acid (DHA) had the potential to inhibit NLRP3 inflammasome expression in hepatocytes and partly abolished LPS-induced NLRP3 inflammasome activation. Furthermore, a high-fat diet increased but PUFA-enriched diet decreased sensitization to LPS-induced hepatic NLRP3 inflammasome activation in vivo. Moreover, PA increased but DHA decreased phosphorylated NF-κB p65 protein expression in hepatocytes.CONCLUSION: Hepatic NLRP3 inflammasome activation played an important role in the development of non-alcoholic fatty liver disease. Dietary SFAs and PUFAs oppositely regulated the activity of NLRP3 inflammasome through direct activation or inhibition of NF-κB.展开更多
OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituen...OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings revealed that HEL has a protective effect on LPS-induced ALI in rats,and its mechanism may be related to inhibiting TLR4/NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.展开更多
Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,mo...Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers.展开更多
Introduction Inflammatory bowel diseases(IBD),such as Crohn’s disease(CD)and ulcerative colitis(UC),are a group of chronic inflammatory disorders of the gastrointestinal tract[1-2].The symptoms of IBD include abdomin...Introduction Inflammatory bowel diseases(IBD),such as Crohn’s disease(CD)and ulcerative colitis(UC),are a group of chronic inflammatory disorders of the gastrointestinal tract[1-2].The symptoms of IBD include abdominal pain,diarrhea,and bloody stool.IBD affects a patient’s quality of life severely,due in part to its frequent recurrence.Colorectal cancer(CRC)is a malignancy in the colon or rectum with symptoms including bloody stool,changes in展开更多
Background:Dermatomyositis(DM)and polymyositis(PM)are common inflammatory myopathies whose immunopathogenic mechanisms remain poorly understood.The NOD-like receptor family,pyrin domain containing 3(NLRP3)inflammasome...Background:Dermatomyositis(DM)and polymyositis(PM)are common inflammatory myopathies whose immunopathogenic mechanisms remain poorly understood.The NOD-like receptor family,pyrin domain containing 3(NLRP3)inflammasome is a type of cytoplasmic multiprotein inflammasome and is responsible for the activation of inflammatory reactivations.Responding to a wide range of exogenous and endogenous microbial or sterile stimuli,NLRP3 inflammasomes can cleave pro-caspase-1 into active caspase-1,which processes the pro-infammatory cytokines pro-interleukin(IL)-1βand pro-IL-18 into active and secreted IL-1βand I L-18.The NLRP3 inflammasome is implicated in infectious and sterile inflammatory diseases.However,it remains unclear whether it is involved in the pathogenesis of DM/PM,which we aim to address in our research.Methods:In this study,22 DM/PM patients and 24 controls were recruited.The protein and RNA expression of IL-113,IL-18,NLRP3,and caspase-1 in serum and muscle samples were tested and compared between the two groups.Results:The serum IL-1βand IL-18 levels were significantly higher in DM/PM patients than those in the controls by enzyme linked immunosorbent assay(EL1SA,DM vs.control,25.02±8.29 ng/ml vs.16.49±3.30 ng/ml,P〈0.001;PM vs.control,26.49±7.79 ng/ml vs.16.49±3.30 ng/ml,P〈0.001).Moreover,the real-time quantitative reverse transcription-polymerase chain reaction(qRT-PCR)showed that DM/PM patients exhibited higher RNA expression of IL-lβ,IL-18,and NLRP3 in the muscle(for IL-1β,DM vs.control,P 0.0012,PM vs.control,P=0.0021;for IL-18,DM vs.control,P=0.0045,PM vs.control,P 0.0031;for NLRP3,DM vs.control,P=0.0017,PM vs.control,P 0.0006).Moreover,the protein expression of NLRP3 and caspase-1 in muscle samples of DM/PM patients were also significantly elevated compared to that in the muscles of the controls.Conclusions:Our findings demonstrate that the NLRP3 inflammasome is implicated in the pathogenesis of DM/PM.High NLRP3 expression led to elevated levels of IL-l13 and IL-18 and could be one of the factors promoting disease progress.展开更多
Background: Cryopyrin-associated periodic syndrome (CAPS) is a group of rare, heterogeneous autoinflammatory disease characterized by interleukin (IL)-1β-mediated systemic inflammation and clinical symptoms invo...Background: Cryopyrin-associated periodic syndrome (CAPS) is a group of rare, heterogeneous autoinflammatory disease characterized by interleukin (IL)-1β-mediated systemic inflammation and clinical symptoms involving skin, joints, central nervous system, and eyes. It encompasses a spectrum of three clinically overlapping autoinflammatory syndromes including familial cold autoinflammatory syndrome, Muckle-Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disease. CAPS is associated with gain-of-function missense mutations in NOD-like receptor family pyrin domain-containing protein 3 (NLRP3), the gene encoding NLRP3. Moreover, most mutations leading to MWS occurred in exon 3 ofNLRP3 gene. Here, we reported a novel mutation occurred in exon 1 ofNLRP3 gene in an MWS patient and attempted to explore the pathogenic mechanism. Methods: Genetic sequence analysis of NLRP3 was performed in an MWS patient who presented with periodic lever, arthralgia, and multiform skin lesions. NLRP3 was also analyzed in this patient's parents and 50 healthy individuals. Clinical examinations including X-ray examination, skin biopsy, bone marrow aspiration smear, and blood test of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), serum levels oflL-1β, immunoglobulin E (lgE), antineutrophil cytoplasmic antibodies, antinuclear antibodies, and extractable nuclear antigen were also analyzed. The protein structure of mutant NLRP3 inflammasome was calculated by SWISS-MODEL software. Proteins of wild type and mutant components ofNLRP3 inflammasome were expressed and purified, and the interaction abilities between these proteins were tested by surface plasmon resonance (SPR) assay. Results: X-ray examination showed no abnormality in the patient's knees. Laboratory tests indicated an elevation of CRP (233.24 nag/L) and ESR (67 mm/h) when the patient had fever. Serum IL-1β increased to 24.37 pg/ml, and serum lgE was higher than 2500.00 IU/ml. Other blood tests were normal. Bone marrow aspiration smear was normal. A novel point mutation c.92A〉T in exon 1 of NLRP3 gene was identified, which caused a p.D31V mutation in pyrin domain (PYD) of NLRP3. SPR assay showed that this point mutation may strengthen the interaction between the PYD of NLRP3 and the PYD of the apoptosis-associated speck-like protein. The mutation c.92A〉T in exon 1 of the NLRP3 gene was not lbund in the patient's parents and 50 healthy individuals. Conclusions: The rnutation c.92A〉T in exon 1 of the NLRP3 gene is a novel mutation associated with MWS. The p.D31V mutation might promote the activation ofNLRP3 inflammasome and induce MWS in this patient.展开更多
Objective:To investigate the effect of curcumol on NOD-like receptor thermoprotein domain 3(NLRP3)inflammasomes,and analyze the mechanism underlying curcumol against liver fibrosis.Methods:Thirty Kunming mice were div...Objective:To investigate the effect of curcumol on NOD-like receptor thermoprotein domain 3(NLRP3)inflammasomes,and analyze the mechanism underlying curcumol against liver fibrosis.Methods:Thirty Kunming mice were divided into a control group,a model group and a curcumol group according to a random number table,10 mice in each group.Mice were intraperitoneally injected with 40% carbon tetrachloride(CCl4:peanut oil,2:3 preparation)at 5 m L/kg for 6 weeks,twice a week,for developing a liver fibrosis model.The mice in the control group were given the same amount of peanut oil,twice a week for 6 weeks.The mice in the curcumol group were given curcumol(30 m L/kg)intragastrically,and the mice in the model and control groups were given the same amount of normal saline,once a day for 6 weeks.Changes in liver structure were observed by hematoxylin and eosin(HE)and Masson staining.Liver function,liver fiber indices,and the expression of interleukin(IL)-10 and tumor necrosis factor-α(TNF-α)levels were determined by automatic biochemical analyzer and enzyme linked immunosorbent assay kit.Immunoblotting and reverse transcription-quantitative PCR(RT-qPCR)were performed to detect the expression of NLRP3 inflammasome-related molecules,TGF-β and collagen.Results:HE and Masson staining results showed that the hepatocytes of the model group were arranged irregularly with pseudo-lobular structure and a large amount of collagen deposition.The mice in the curcumol group had a significant decrease in liver function and liver fibers indices compared with the model group(P<0.05);RT-qPCR and Western blot results reveal that,in the curcumol group,the mRNA and protein expression levels of NLRP3,IL-1β,Caspase 1 and gasdermin D decreased significantly compared with the model group(P<0.05);immunohistochemical results showed that in the curcumol group,the protein expression levels of NLRP3 and IL-1β decreased significantly compared with the model group(P<0.05).Conclusion:A potential anti-liver fibrosis mechanism of curcumol may be associated with the inhibition of NLRP3 inflammasomes and decreasing the downstream inflammatory response.展开更多
Background: Idiosyncratic drug-induced liver injury(IDILI) is a serious side effect of drugs, Epimedii Folium(EF) is unequivocally implicated in idiosyncratic liver injury onset, potentially due to its ability to pert...Background: Idiosyncratic drug-induced liver injury(IDILI) is a serious side effect of drugs, Epimedii Folium(EF) is unequivocally implicated in idiosyncratic liver injury onset, potentially due to its ability to perturb the NOD-like receptor family pyrin domain containing 3(NLRP3) inflammasome. Fructus Ligustri Lucidi(FLL), a frequently used medicinal combination with EF, has not yet been investigated for its ability to ameliorate EF-associated hepatotoxicity. Aims and Objectives: Study on the mechanism of compatibility of FLL to alleviate liver injury caused by EF. Materials and Methods: Western blot was used to determine the expression of related proteins, ELISA was used to detect the secretion of related inflammatory factors IL-1β, IL-18, IL-6 and TNF-α, liver injury indexes were detected and liver pathological tissue staining was used to evaluate the liver injury. Results: Our results demonstrated that EF exerted a particular augmenting effect on the stimulation of the NLRP3 inflammasome mediated by nigericin or ATP, whereas FLL suppressed the NLRP3 inflammasome stimulation. Furthermore, an equal EF to FLL ratio significantly reduced the stimulatory effects of EF. Moreover, EF has the potential to induce hepatic injury and augment pro-inflammatory cytokine synthesis in rats subjected to LPS. However, when combined with FLL, the detrimental effects of EF were mitigated. Conclusions: FLL possesses the capacity to attenuate EF-associated hepatotoxicity by suppressing EF-triggered NLRP3 inflammasome activation. Thus, FLL holds promise for improving the clinical safety profile of EF, shedding light on the potential of compatibility and detoxification theories in traditional Chinese medicine.展开更多
AIM:To determine the therapeutic benefits of fenofibrate(Feno)on the dysfunction of high glucose(HG)-induced human retinal microvascular endothelial cells(HRMECs)and to elucidate the underlying molecular mechanism.MET...AIM:To determine the therapeutic benefits of fenofibrate(Feno)on the dysfunction of high glucose(HG)-induced human retinal microvascular endothelial cells(HRMECs)and to elucidate the underlying molecular mechanism.METHODS:HRMEC dysfunction model was established by 48h glucose(30 mmol/L)treatment and treated with Feno/NOD-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome activator(Nigericin).Cell viability/apoptosis were assessed by cell counting kit-8(CCK-8)/terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay(TUNEL)staining and flow cytometry assays.Levels of apoptosis-(Bcl-2-associated X protein,Bax/B-cell lymphoma 2,Bcl-2),vascular permeability-(vascular endothelial growth factor,VEGF)and inflammasome activation-related proteins(NLRP3/cleaved caspase-1/apoptosis-associated speck-like protein containing a CARD,ASC),as well as inflammatory factors(interleukin,IL-6/IL-1β/tumor necrosis factor,TNF-α/IL-18)were determined with Western blot/enzyme linked immunosorbent assay(ELISA).Cell permeability/reactive oxygen species(ROS)level/superoxide dismutase(SOD)activity/malondialdehyde(MDA)content were assessed by Evans blue staining/2',7'-dichlorodihydrofluorescein diacetate(DCFH-DA)fluorescent probe/SOD kit/MDA kit.RESULTS:HRMEC dysfunction was successfully induced by HG,evidenced by decreased viability(P<0.001),increased apoptosis(P<0.001),permeability(P<0.001),and inflammatory factor levels(P<0.001).Feno treatment significantly ameliorated HG-induced HRMEC dysfunction(P<0.01).Meanwhile,HG induction increased ROS production(P<0.001)and MDA content(P<0.001)in HRMECs,while reducing SOD activity(P<0.001),indicative of oxidative stress.This was,however,abolished by Feno(P<0.05).Moreover,Feno eliminated activation of NLRP3 inflammasomes(P<0.05)in HG-induced HRMECs.Strikingly,activation of NLRP3 inflammasomes partially averted the inhibition of Feno on HG-induced HRMEC dysfunction(P<0.05).CONCLUSION:Feno represses oxidative stress and NLRP3 inflammasome activation,consequently alleviating HG-induced HRMEC dysfunction.展开更多
基金Supported by The National Natural Science Foundation of ChinaNO.81170374 and NO.81470842 to Hua J
文摘AIM: To investigate the effect of different dietary fatty acids on hepatic inflammasome activation.METHODS: Wild-type C57BL/6 mice were fed either a high-fat diet or polyunsaturated fatty acid (PUFA)-enriched diet. Primary hepatocytes were treated with either saturated fatty acids (SFAs) or PUFAs as well as combined with lipopolysaccharide (LPS). The expression of NOD-like receptor protein 3 (NLRP3) inflammasome, peroxisome proliferator-activated receptor-γ and nuclear factor-kappa B (NF-κB) was determined by real-time PCR and Western blot. The activity of Caspase-1 and interleukine-1β production were measured.RESULTS: High-fat diet-induced hepatic steatosis was sufficient to induce and activate hepatic NLRP3 inflammasome. SFA palmitic acid (PA) directly activated NLRP3 inflammasome and increased sensitization to LPS-induced inflammasome activation in hepatocytes. In contrast, PUFA docosahexaenoic acid (DHA) had the potential to inhibit NLRP3 inflammasome expression in hepatocytes and partly abolished LPS-induced NLRP3 inflammasome activation. Furthermore, a high-fat diet increased but PUFA-enriched diet decreased sensitization to LPS-induced hepatic NLRP3 inflammasome activation in vivo. Moreover, PA increased but DHA decreased phosphorylated NF-κB p65 protein expression in hepatocytes.CONCLUSION: Hepatic NLRP3 inflammasome activation played an important role in the development of non-alcoholic fatty liver disease. Dietary SFAs and PUFAs oppositely regulated the activity of NLRP3 inflammasome through direct activation or inhibition of NF-κB.
基金Natural Science Foundation Project of Chongqing Municipality:a Metabolome-based Study on the Protective Mechanism of Yemazhui(Herba Eupatorii Lindleyani)Sesquiterpene Lactones Against Acute Lung Injury(No.cstc2021jcyj-msxmX0365)Science and Technology Research Program of Chongqing Municipal Education Commission:a Cytokine Storm-based Study of the Protective Effect of Yemazhui(Herba Eupatorii Lindleyani)Extract Intervention on COVID-19 Lung Injury(No.KJZD-K202215101)。
文摘OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings revealed that HEL has a protective effect on LPS-induced ALI in rats,and its mechanism may be related to inhibiting TLR4/NF-κB/NLRP3 signaling pathway and improving intestinal flora disturbance.
文摘Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers.
基金supported by Funds from Talents’Start-up Fund of Gannan Medical University(QD201404,LIU Zhiping)Natural Science Foundation of Jiangxi Province(20151512040424,LIU Zhi-ping)
文摘Introduction Inflammatory bowel diseases(IBD),such as Crohn’s disease(CD)and ulcerative colitis(UC),are a group of chronic inflammatory disorders of the gastrointestinal tract[1-2].The symptoms of IBD include abdominal pain,diarrhea,and bloody stool.IBD affects a patient’s quality of life severely,due in part to its frequent recurrence.Colorectal cancer(CRC)is a malignancy in the colon or rectum with symptoms including bloody stool,changes in
基金This work was supported by a grant from the National Natural Science Foundation of China(No.81271399).
文摘Background:Dermatomyositis(DM)and polymyositis(PM)are common inflammatory myopathies whose immunopathogenic mechanisms remain poorly understood.The NOD-like receptor family,pyrin domain containing 3(NLRP3)inflammasome is a type of cytoplasmic multiprotein inflammasome and is responsible for the activation of inflammatory reactivations.Responding to a wide range of exogenous and endogenous microbial or sterile stimuli,NLRP3 inflammasomes can cleave pro-caspase-1 into active caspase-1,which processes the pro-infammatory cytokines pro-interleukin(IL)-1βand pro-IL-18 into active and secreted IL-1βand I L-18.The NLRP3 inflammasome is implicated in infectious and sterile inflammatory diseases.However,it remains unclear whether it is involved in the pathogenesis of DM/PM,which we aim to address in our research.Methods:In this study,22 DM/PM patients and 24 controls were recruited.The protein and RNA expression of IL-113,IL-18,NLRP3,and caspase-1 in serum and muscle samples were tested and compared between the two groups.Results:The serum IL-1βand IL-18 levels were significantly higher in DM/PM patients than those in the controls by enzyme linked immunosorbent assay(EL1SA,DM vs.control,25.02±8.29 ng/ml vs.16.49±3.30 ng/ml,P〈0.001;PM vs.control,26.49±7.79 ng/ml vs.16.49±3.30 ng/ml,P〈0.001).Moreover,the real-time quantitative reverse transcription-polymerase chain reaction(qRT-PCR)showed that DM/PM patients exhibited higher RNA expression of IL-lβ,IL-18,and NLRP3 in the muscle(for IL-1β,DM vs.control,P 0.0012,PM vs.control,P=0.0021;for IL-18,DM vs.control,P=0.0045,PM vs.control,P 0.0031;for NLRP3,DM vs.control,P=0.0017,PM vs.control,P 0.0006).Moreover,the protein expression of NLRP3 and caspase-1 in muscle samples of DM/PM patients were also significantly elevated compared to that in the muscles of the controls.Conclusions:Our findings demonstrate that the NLRP3 inflammasome is implicated in the pathogenesis of DM/PM.High NLRP3 expression led to elevated levels of IL-l13 and IL-18 and could be one of the factors promoting disease progress.
基金This work was supported by the grant from the National Natural Science Foundation of China (No. 81201267).
文摘Background: Cryopyrin-associated periodic syndrome (CAPS) is a group of rare, heterogeneous autoinflammatory disease characterized by interleukin (IL)-1β-mediated systemic inflammation and clinical symptoms involving skin, joints, central nervous system, and eyes. It encompasses a spectrum of three clinically overlapping autoinflammatory syndromes including familial cold autoinflammatory syndrome, Muckle-Wells syndrome (MWS), and neonatal-onset multisystem inflammatory disease. CAPS is associated with gain-of-function missense mutations in NOD-like receptor family pyrin domain-containing protein 3 (NLRP3), the gene encoding NLRP3. Moreover, most mutations leading to MWS occurred in exon 3 ofNLRP3 gene. Here, we reported a novel mutation occurred in exon 1 ofNLRP3 gene in an MWS patient and attempted to explore the pathogenic mechanism. Methods: Genetic sequence analysis of NLRP3 was performed in an MWS patient who presented with periodic lever, arthralgia, and multiform skin lesions. NLRP3 was also analyzed in this patient's parents and 50 healthy individuals. Clinical examinations including X-ray examination, skin biopsy, bone marrow aspiration smear, and blood test of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), serum levels oflL-1β, immunoglobulin E (lgE), antineutrophil cytoplasmic antibodies, antinuclear antibodies, and extractable nuclear antigen were also analyzed. The protein structure of mutant NLRP3 inflammasome was calculated by SWISS-MODEL software. Proteins of wild type and mutant components ofNLRP3 inflammasome were expressed and purified, and the interaction abilities between these proteins were tested by surface plasmon resonance (SPR) assay. Results: X-ray examination showed no abnormality in the patient's knees. Laboratory tests indicated an elevation of CRP (233.24 nag/L) and ESR (67 mm/h) when the patient had fever. Serum IL-1β increased to 24.37 pg/ml, and serum lgE was higher than 2500.00 IU/ml. Other blood tests were normal. Bone marrow aspiration smear was normal. A novel point mutation c.92A〉T in exon 1 of NLRP3 gene was identified, which caused a p.D31V mutation in pyrin domain (PYD) of NLRP3. SPR assay showed that this point mutation may strengthen the interaction between the PYD of NLRP3 and the PYD of the apoptosis-associated speck-like protein. The mutation c.92A〉T in exon 1 of the NLRP3 gene was not lbund in the patient's parents and 50 healthy individuals. Conclusions: The rnutation c.92A〉T in exon 1 of the NLRP3 gene is a novel mutation associated with MWS. The p.D31V mutation might promote the activation ofNLRP3 inflammasome and induce MWS in this patient.
基金Supported by the National Natural Science Foundation of China(No.81960751,81660705)Guangxi Young and Middle-aged Teachers’Research Ability Improvement Project(No.2020KY59009)+2 种基金Guangxi Zhuangyao Pharmaceutical Key Laboratory(No.GXZYZZ2019-1,GXZYZZ2020-07)Guangxi Natural Science Foundation Youth Project(No.2020GXNSFBA297094)Guangxi University of Traditional Chinese Medicine School-level Project Youth Fund(No.2020QN006)。
文摘Objective:To investigate the effect of curcumol on NOD-like receptor thermoprotein domain 3(NLRP3)inflammasomes,and analyze the mechanism underlying curcumol against liver fibrosis.Methods:Thirty Kunming mice were divided into a control group,a model group and a curcumol group according to a random number table,10 mice in each group.Mice were intraperitoneally injected with 40% carbon tetrachloride(CCl4:peanut oil,2:3 preparation)at 5 m L/kg for 6 weeks,twice a week,for developing a liver fibrosis model.The mice in the control group were given the same amount of peanut oil,twice a week for 6 weeks.The mice in the curcumol group were given curcumol(30 m L/kg)intragastrically,and the mice in the model and control groups were given the same amount of normal saline,once a day for 6 weeks.Changes in liver structure were observed by hematoxylin and eosin(HE)and Masson staining.Liver function,liver fiber indices,and the expression of interleukin(IL)-10 and tumor necrosis factor-α(TNF-α)levels were determined by automatic biochemical analyzer and enzyme linked immunosorbent assay kit.Immunoblotting and reverse transcription-quantitative PCR(RT-qPCR)were performed to detect the expression of NLRP3 inflammasome-related molecules,TGF-β and collagen.Results:HE and Masson staining results showed that the hepatocytes of the model group were arranged irregularly with pseudo-lobular structure and a large amount of collagen deposition.The mice in the curcumol group had a significant decrease in liver function and liver fibers indices compared with the model group(P<0.05);RT-qPCR and Western blot results reveal that,in the curcumol group,the mRNA and protein expression levels of NLRP3,IL-1β,Caspase 1 and gasdermin D decreased significantly compared with the model group(P<0.05);immunohistochemical results showed that in the curcumol group,the protein expression levels of NLRP3 and IL-1β decreased significantly compared with the model group(P<0.05).Conclusion:A potential anti-liver fibrosis mechanism of curcumol may be associated with the inhibition of NLRP3 inflammasomes and decreasing the downstream inflammatory response.
基金supported by the State Key Program of National Natural Science of China (81930110)Military Logistics Research Project on Health Special Project (23BJZ33)the Key Project at Central Government Level: The ability establishment of sustainable use for valuable Chinese medicine resources (2060302)。
文摘Background: Idiosyncratic drug-induced liver injury(IDILI) is a serious side effect of drugs, Epimedii Folium(EF) is unequivocally implicated in idiosyncratic liver injury onset, potentially due to its ability to perturb the NOD-like receptor family pyrin domain containing 3(NLRP3) inflammasome. Fructus Ligustri Lucidi(FLL), a frequently used medicinal combination with EF, has not yet been investigated for its ability to ameliorate EF-associated hepatotoxicity. Aims and Objectives: Study on the mechanism of compatibility of FLL to alleviate liver injury caused by EF. Materials and Methods: Western blot was used to determine the expression of related proteins, ELISA was used to detect the secretion of related inflammatory factors IL-1β, IL-18, IL-6 and TNF-α, liver injury indexes were detected and liver pathological tissue staining was used to evaluate the liver injury. Results: Our results demonstrated that EF exerted a particular augmenting effect on the stimulation of the NLRP3 inflammasome mediated by nigericin or ATP, whereas FLL suppressed the NLRP3 inflammasome stimulation. Furthermore, an equal EF to FLL ratio significantly reduced the stimulatory effects of EF. Moreover, EF has the potential to induce hepatic injury and augment pro-inflammatory cytokine synthesis in rats subjected to LPS. However, when combined with FLL, the detrimental effects of EF were mitigated. Conclusions: FLL possesses the capacity to attenuate EF-associated hepatotoxicity by suppressing EF-triggered NLRP3 inflammasome activation. Thus, FLL holds promise for improving the clinical safety profile of EF, shedding light on the potential of compatibility and detoxification theories in traditional Chinese medicine.
基金Supported by grants from the Tianjin Key Medical Discipline(Specialty)Construction Project(No.TJYXZDXK-037A).
文摘AIM:To determine the therapeutic benefits of fenofibrate(Feno)on the dysfunction of high glucose(HG)-induced human retinal microvascular endothelial cells(HRMECs)and to elucidate the underlying molecular mechanism.METHODS:HRMEC dysfunction model was established by 48h glucose(30 mmol/L)treatment and treated with Feno/NOD-like receptor thermal protein domain associated protein 3(NLRP3)inflammasome activator(Nigericin).Cell viability/apoptosis were assessed by cell counting kit-8(CCK-8)/terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay(TUNEL)staining and flow cytometry assays.Levels of apoptosis-(Bcl-2-associated X protein,Bax/B-cell lymphoma 2,Bcl-2),vascular permeability-(vascular endothelial growth factor,VEGF)and inflammasome activation-related proteins(NLRP3/cleaved caspase-1/apoptosis-associated speck-like protein containing a CARD,ASC),as well as inflammatory factors(interleukin,IL-6/IL-1β/tumor necrosis factor,TNF-α/IL-18)were determined with Western blot/enzyme linked immunosorbent assay(ELISA).Cell permeability/reactive oxygen species(ROS)level/superoxide dismutase(SOD)activity/malondialdehyde(MDA)content were assessed by Evans blue staining/2',7'-dichlorodihydrofluorescein diacetate(DCFH-DA)fluorescent probe/SOD kit/MDA kit.RESULTS:HRMEC dysfunction was successfully induced by HG,evidenced by decreased viability(P<0.001),increased apoptosis(P<0.001),permeability(P<0.001),and inflammatory factor levels(P<0.001).Feno treatment significantly ameliorated HG-induced HRMEC dysfunction(P<0.01).Meanwhile,HG induction increased ROS production(P<0.001)and MDA content(P<0.001)in HRMECs,while reducing SOD activity(P<0.001),indicative of oxidative stress.This was,however,abolished by Feno(P<0.05).Moreover,Feno eliminated activation of NLRP3 inflammasomes(P<0.05)in HG-induced HRMECs.Strikingly,activation of NLRP3 inflammasomes partially averted the inhibition of Feno on HG-induced HRMEC dysfunction(P<0.05).CONCLUSION:Feno represses oxidative stress and NLRP3 inflammasome activation,consequently alleviating HG-induced HRMEC dysfunction.