A novel Cu-t-ZrO_(2)catalyst with enhanced electronic metal-support interaction(EMSI)is designed for efficient electrocatalytic conversion of nitrate(NO_(3^(-)))to ammonia(NH_(3)),achieving a remarkable Faradaic effic...A novel Cu-t-ZrO_(2)catalyst with enhanced electronic metal-support interaction(EMSI)is designed for efficient electrocatalytic conversion of nitrate(NO_(3^(-)))to ammonia(NH_(3)),achieving a remarkable Faradaic efficiency and yield rate of 97.54%and 33.64 mg h^(-1)mg_(cat)^(-1),respectively.Electrons are more likely to be transferred from Cu to t-ZrO_(2)at the electron-rich interface due to the lower work function,which promotes the formation of highly active Cu species and facilitates NO_(3^(-))adsorption,ensuring selective conversion into NH_(3).展开更多
Zinc-nitrate battery could produce electrical power,remove pollutant nitrate and obtain value-added ammonia,where the cathodic reaction of converting nitrate to ammonia is sluggish and complex due to the involvement o...Zinc-nitrate battery could produce electrical power,remove pollutant nitrate and obtain value-added ammonia,where the cathodic reaction of converting nitrate to ammonia is sluggish and complex due to the involvement of multi-electron transfer.Thus,highly efficient catalysts for nitrate reduction reaction(NO_(3)RR)are greatly needed.In this work,we report a high entropy hydroxide(HE-OH)as an excellent NO3RR catalyst,which could achieve high NH_(3)Faradaic efficiencies(e.g.,nearly 100%at-0.3 V versus reversible hydrogen electrode)and high yield rates(e.g.,30.4 mg h^(-1)cm^(-2)at-0.4 V).Moreover,HE-OH could also deliver a current density of 10 mA/cm^(2) at an overpotential of 260 mV for oxygen evolution reaction.The assembled zinc-nitrate battery using HE-OH as the cathode demonstrates a high power density(e.g.,3.62 mW/cm^(2)),rechargeability and stability.展开更多
Revealing the dynamic reconfiguration of catalysts and the evolution of active species during catalysis,elucidating and regulating the reconfiguration mechanism are paramount to the development of highperformance elec...Revealing the dynamic reconfiguration of catalysts and the evolution of active species during catalysis,elucidating and regulating the reconfiguration mechanism are paramount to the development of highperformance electrochemical nitrate reduction(NO_(3)RR)to ammonia.In-situ characterizations can precisely track reaction process and unveil the origin of activity enhancement.Here,in-situ reconstruction of pre-catalyst Co_(3)O_(4)fabricates a stable heterojunction Co(OH)_(2)/Co_(3)O_(4)to boost NO_(3)RR to ammonia.Insitu generated heterojunction accelerates the transformation of^(*)NO_(3)to^(*)NO_(2),while Co(OH)_(2)promotes the dissociation of water to active*H species for the hydrogenation of^(*)N species,and thereby improving the deoxygenation and hydrogenation ability of NO_(3)RR to NH_(3)and achieving a high Faradaic efficiency(FE)about 96.2%and a high NH_(3)production rate of 218.5μmol h^(-1)mg_(cat)^(-1)at-0.3 V.Density functional theory(DFT)calculations verified that in-situ formed active species Co(OH)_(2)on Co_(3)O_(4)markedly decreased the energy barrier of^(*)NO_(3)→^(*)NO_(2)and accelerated the hydrogenation step of^(*)NH→^(*)NH_(2)→^(*)NH_(3).Co(OH)_(2)/Co_(3)O_(4)heterostructure-based Zn-NO_(3)^(-)cell achieves excellent energy supply(1.22 V),a high ammonia yield rate(48.9μmol h^(-1)cm^(-2)),and a high FE(91%).The establishment of the structure-activity relationship during NO_(3)RR provides guidance for designing advanced electrode materials,and the in-situ evolution of species on the electrode surface unveils the intrinsic nature of improved catalytic performance.展开更多
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles in...Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states.展开更多
Nitrate contamination of groundwater is a worldwide problem, particularly in agricultural countries. Exposure to high levels of nitrates in groundwater can have adverse effects on the health of residents who use groun...Nitrate contamination of groundwater is a worldwide problem, particularly in agricultural countries. Exposure to high levels of nitrates in groundwater can have adverse effects on the health of residents who use groundwater for drinking. This study aims to assess the health risk associated with the ingestion of nitrates in well water in the town of M’bahiakro. Health risk maps were created on the basis of hazard quotients (HQ) using the US Environmental Protection Agency (USEPA) health risk assessment model. The results indicate that residents of the Koko, Dougouba and Baoulekro neighbourhoods, whatever their age, are potentially exposed to the toxic effects of NO3−during their daily intake of nitrate-contaminated well water, with reference to hazard quotients (HQ) greater than 1. Nitrate concentrations in the groundwater should therefore be controlled in order to prevent their harmful effects on the health of the population and guarantee its use in rice-growing activities in M’Bahiakro.展开更多
Heterotrophic denitrification based on polylactic acid(PLAHD)can remove nitrate effectively,but it is expensive and can't remove phosphate.Autotrophic denitrification based on iron sulfide(ISAD)can simultaneously ...Heterotrophic denitrification based on polylactic acid(PLAHD)can remove nitrate effectively,but it is expensive and can't remove phosphate.Autotrophic denitrification based on iron sulfide(ISAD)can simultaneously remove nitrate and phosphate cost-effectively,but its nitrate rate is slow.So,iron sulfide mineral/polylactic acid mixotrophic biofilter(ISPLAB)was constructed to combine advantages of ISAD and PLAHD.ISPLAB achieved nitrogen and phosphorus removal rates of 98.04%and 94.12%,respectively,at a hydraulic retention time(HRT)of 24 h.The study also revealed that controlling molecular weight(MW)of PLA improved the release of soluble organic matter;adding iron sulfide enhanced the hydrolysis of PLA and precipitated PO_(4)^(3-) of Fe^(2+)/Fe^(3+),thereby facilitated simultaneous nitrogen and phosphorus removal.Microbial community analysis resulted that denitrifying bacterias(Phaeodactylibacter and Methylotenera),sulfur-reducing bacterias(Hyphomicrobium),sulfur-oxidizing bacteria(Denitratisoma),iron-reducing bacteria(Romboutsia)and hydrolyzed bacterias(norank_f_norank_o_1-20 and norank_f_Caldilineaceae)coexisted in the ISPLAB system.Organics and iron sulfide drived the denitrification process in ISPLAB.展开更多
Nitrate renoxification significantly influences atmospheric nitrogen cycling and global OH budgets.Although numerous nitrite acid(HONO)formation pathways from nitrate photolysis have been widely reported,the influence...Nitrate renoxification significantly influences atmospheric nitrogen cycling and global OH budgets.Although numerous nitrite acid(HONO)formation pathways from nitrate photolysis have been widely reported,the influence of various environmental factors and aerosol properties on reactive nitrogen production remains largely unclear.In this work,we employed NaNO_(3)/humic acid(HA)as a model nitrate photosensitization system to investigate the crucial roles of aerosol acidity,organic fraction,and dissolved oxygen in the production of HONO,NO_(2),and NO_(2)^(-).The presence of HA at 10 mg/L resulted in a remarkable increase in HONO production rates by approximately 2–3 times and NO_(2)^(-) concentration by 3–6 times across a pH range of 5.2 to 2.0.Meanwhile,the molar fraction of gaseous HONO in total N(Ⅲ)production increased from4%to 69%as bulk-phase pH decreased from 5.2 to 2.0.The higher organic fraction(i.e.,20 and 50 mg/L HA concentration)instead inhibited HONO and NO_(2) release.The presence of dissolved oxygen was found to be adverse for reactive nitrogen production.This suggests that the HA photosensitizer promoted the secondary conversion of NO_(2) to HONO mainly via reduced ketyl radical intermediates,while superoxide radical formation might exert a negative effect.Our findings provide comprehensive insights into reactive nitrogen production from photosensitized nitrate photolysis mediated by various external and internal factors,potentially accounting for discrepancies between field observations and model simulations.展开更多
Due to the discharge of industrialwastewater,urban domestic sewage,and intensive marine aquaculture tailwater,nitrate(NO_(3)^(−))pollution has emerged as a significant issue in offshore waters.Nitrate pollution affect...Due to the discharge of industrialwastewater,urban domestic sewage,and intensive marine aquaculture tailwater,nitrate(NO_(3)^(−))pollution has emerged as a significant issue in offshore waters.Nitrate pollution affects aquatic life and may interact with other pollutants,leading to comprehensive toxicity.Cadmium(Cd^(2+))is the most widespread metal contaminant,adversely affecting aquatic life in the coastal waters of China.Despite this,few studies have focused on the synergistic toxicity of NO_(3)^(−)and Cd^(2+)in marine organisms.This study conducted a 30-day exposure experiment on marine Japanese flounder(Paralichthys olivaceus)to explore the synergistic toxicity of NO_(3)^(−)and Cd^(2+).Our results demonstrated that the exposure to Cd^(2+)alone induced slight histopathological changes in the liver.However,malformations such as hepatic vacuolar degeneration and sinusoid dilatationwere exacerbated under co-exposure.Moreover,co-exposure induced the downregulation of antioxidants and the upregulation of the product malonaldehyde(MDA)from lipid peroxidation,indicating potent oxidative stress in the liver.The increased mRNA expression of IL-8,TNF-α,and IL-1β,along with the decreased expression level of TGF-β,indicated a synergistic inflammatory response in the organisms.Furthermore,the co-exposure led to an abnormal expression of P53,caspase-3,caspase-9,Bcl-2,and Bax,and disturbed the apoptosis in the liver through TUNEL staining analysis.Overall,our results imply that co-exposure synergistically affects inflammation,redox status,and apoptosis in flounders.Therefore,the findings from this study provide valuable perspectives on the ecological risk assessment of marine teleosts co-exposure to NO_(3)^(−)and Cd^(2+).展开更多
Red mud(RM)is a solid waste generated in the aluminum industry after the extraction of alumina oxide;its multiple elements and higher pH value likely pose a severe threat to the environment after treatment.However,RM&...Red mud(RM)is a solid waste generated in the aluminum industry after the extraction of alumina oxide;its multiple elements and higher pH value likely pose a severe threat to the environment after treatment.However,RM's higher concentrations of metal components,particularly Fe_(2)O_(3)and rare earth elements(REEs),render RM promising for catalytic application.Hence,this work showed an efficient high-speed RM to catalyze electrocatalytic nitrate-to-ammonia reduction reaction(NARR).RM calcined at 500℃(RM-500)exhibited excellent catalytic performance.Faradaic efficiency of ammonia(FENH_(3))in an electrolyte solution containing 1 mol·L^(-1)NO_(3)-achieved a maximum value of 92.3%at-0.8 V(vs.RHE).Additionally,24-h cycle testing and post-reaction PXRD and SEM indicated that the RM-500 electrocatalyst is stable during NARR.The RM-500 demonstrated a high FE of NH_(3)-to-NO_(3)-of 89.7%at 1.85 V(vs.RHE),showing great potential in the ammonia fuel cells technology and achieving the nitrogen cycle.展开更多
In this work,an effective catalyst of Cu/MnOOH has been successfully constructed for electrochemical nitrate reduction reaction(e NO_(3)RR)for synthesis of ammonia(NH_(3))under ambient conditions.The substrate of MnOO...In this work,an effective catalyst of Cu/MnOOH has been successfully constructed for electrochemical nitrate reduction reaction(e NO_(3)RR)for synthesis of ammonia(NH_(3))under ambient conditions.The substrate of MnOOH plays an important role on the size and electronic structure of Cu nanoparticles,where Cu has the ultrafine size of 2.2 nm and positive shift of its valence states,which in turn causes the increased number of Cu active sites and enhanced intrinsic activity of every active site.As a result,this catalyst realizes an excellent catalytic performance on eNO_(3)RR with the maximal NH_(3)Faraday efficiency(FE)(96.8%)and the highest yield rate(55.51 mg h^(-1)cm^(-2))at a large NH_(3)partial current density of700 m A/cm^(2),which could help to promote the industrialization of NH_(3)production under ambient conditions.展开更多
Electrocatalytic conversion of nitrate to ammonia(NITRR)can simultaneously achieve the removal of nitrate and the synthesis of value-added ammonia,a promising candidate to replace Haber-Bosch process with low carbon d...Electrocatalytic conversion of nitrate to ammonia(NITRR)can simultaneously achieve the removal of nitrate and the synthesis of value-added ammonia,a promising candidate to replace Haber-Bosch process with low carbon dioxide emissions.However,high hydrogenation energy barrier for*NO intermediates and insufficient supply of active hydrogen cause slow hydrogenation process,and further result in low efficiency of nitrate conversion and ammonia synthesis.Herein,a series of tandem catalysts,one-dimensional coordination polymers(1D CCPs)with dual sites are synthesized and obtained 190.4 mg h^(-1)mgcat^(-1)ammonia production rate with Faradaic efficiency of 97.16%,outperforming to the most of recent reported catalysts.The catalytic performances are well-maintained even after a long-term stability test of 1200 h,laying the foundation for practical applications.Density functional theory results reveal that the stationary adsorbed*NO on Ni site induced proximity electronic effect could reduce the energy barrier for hydrogenation of*NO intermediates over Cu site.In addition,the Ni site in the dual sites 1D CCPs is conducive to generating active hydrogen,providing rich proton source to boost the hydrogenation of*NO,and further enhancing the compatibility of deoxygenation and hydrogenation process.Our work paves a new insight into the mechanism of NITRR process and will inspire more research interests in exploring the proximity electronic effect in catalytic process.展开更多
Electrochemical reduction of nitrate(NO_(3^(-)))serves as an eco-friendly friendly alternative to the conventional Haber-Bosch ammonia(NH_(3))synthesis process.The Cu electrocatalyst is widely recognized for its stron...Electrochemical reduction of nitrate(NO_(3^(-)))serves as an eco-friendly friendly alternative to the conventional Haber-Bosch ammonia(NH_(3))synthesis process.The Cu electrocatalyst is widely recognized for its strong adsorption capacity towards nitrate,but its limited H adsorption and slow hydrogenation of oxynitride intermediates hinder the efficiency of converting NO_(3^(-))into NH_(3).Herein,a series of nanocomposite catalysts composed of CuO nanostructure with low NiO content that grow in-situ on carbon paper(Cu O/Ni O_(x)-CP)were synthesized via hydrothermal method and calcination for enhanced nitrate electroreduction utilizing the strong nitrate adsorption capacity of copper and excellent water dissociation ability of NiO to supply hydrogen free radicals(·H).In-situ Raman spectroscopy reveals dynamic reconstruction of Cu/NiO_(x)during the electrochemical nitrate reduction process from Cu O/NiO_(x).Due to the synergistic effect of Cu and NiO,a high Faradaic efficiency(FE,~97.9%)and yield rate(YR,391.5μmol h^(-1)cm^(-2))of ammonia are achieved on CuO/NiO_(2.3%)-CP.Electron paramagnetic resonance(EPR)proves that the presence of Ni O enhances the generation of·H,which can be rapidly consumed during nitrate reduction process.Density functional theory(DFT)calculations indicate that the activation energy of Ni O(0.57 eV)is much lower than Cu(0.84 e V)for water splitting to generate·H,thus facilitating*NO hydrogenations.This drives us to create more effective catalysts for nitrate reduction under neutral conditions by promoting H2O dissociation.展开更多
Ammonia is the cornerstone of modern agriculture,providing a critical nitrogen source for global food production and serving as a key raw material for numerous industrial chemicals.Electrocatalytic nitrate reduction,a...Ammonia is the cornerstone of modern agriculture,providing a critical nitrogen source for global food production and serving as a key raw material for numerous industrial chemicals.Electrocatalytic nitrate reduction,as an environmentally friendly method for synthesizing ammonia,not only mitigates the reliance on current ammonia synthesis processes fed by traditional fossil fuels but also effectively reduces nitrate pollution resulting from agricultural and industrial activities.This review explores the fundamental principles of electrocata lytic nitrate reduction,focusing on the key steps of electron transfer and ammonia formation.Additionally,it summarizes the critical factors influencing the performance and selectivity of the reaction,including the properties of the electrolyte,operating voltage,electrode materials,and design of the electrolytic cell.Further discussion of recent advances in electrocatalysts,including pure metal catalysts,metal oxide catalysts,non-metallic catalysts,and composite catalysts,highlights their significant roles in enhancing both the efficiency and selectivity of electrocata lytic nitrate to ammonia(NRA)reactions.Critical challenges for the industrial NRA trials and further outlooks are outlined to propel this strategy toward real-world applications.Overall,the review provides an in-depth overview and comprehensive understanding of electrocata lytic NRA technology,thereby promoting further advancements and innovations in this domain.展开更多
Cropland nitrate leaching is the major nitrogen(N) loss pathway, and it contributes significantly to water pollution. However, cropland nitrate leaching estimates show great uncertainty due to variations in input data...Cropland nitrate leaching is the major nitrogen(N) loss pathway, and it contributes significantly to water pollution. However, cropland nitrate leaching estimates show great uncertainty due to variations in input datasets and estimation methods. Here, we presented a re-evaluation of Chinese cropland nitrate leaching, and identified and quantified the sources of uncertainty by integrating three cropland area datasets, three N input datasets, and three estimation methods. The results revealed that nitrate leaching from Chinese cropland averaged 6.7±0.6 Tg N yr^(-1)in 2010, ranging from 2.9 to 15.8 Tg N yr^(-1)across 27 different estimates. The primary contributor to the uncertainty was the estimation method, accounting for 45.1%, followed by the interaction of N input dataset and estimation method at 24.4%. The results of this study emphasize the need for adopting a robust estimation method and improving the compatibility between the estimation method and N input dataset to effectively reduce uncertainty. This analysis provides valuable insights for accurately estimating cropland nitrate leaching and contributes to ongoing efforts that address water pollution concerns.展开更多
The purity of electronic-grade chemicals significantly impacts electronic components.Although crystallization has been used to purify cerium ammonium nitrate(CAN),the impurity removal mechanism underlying different cr...The purity of electronic-grade chemicals significantly impacts electronic components.Although crystallization has been used to purify cerium ammonium nitrate(CAN),the impurity removal mechanism underlying different crystallization parameters remains unclear.Traditional analytical methods of inductively coupled plasma mass spectrometry(ICP-MS)have problems in detecting trace Fe accurately,because of the high concentration of Ce and interference of polyatomic ions.Therefore,this study developed a new method integrating the standard addition and internal standard methods and explored the role of the kinetic energy discrimination mode.This new approach effectively overcomes Ce-related matrix interference and fills the gap in ultra-trace impurity detection.Furthermore,the study investigated the effects of cooling rate,seed mass loading and seed size on the removal of Fe impurity.The seed mass loading affects the average crystal size through regulating secondary nucleation and crystal growth.The removal of Fe in CAN is determined by surface adsorption and agglomeration.Under the condition of the cooling rate of 0.2 K·min^(-1),and addition of 0.5%(mass)600-680 μm seeds,the Fe content is the lowest,at only 0.24 mg·L^(-1),and the Fe removal rate reaches 92.28%.展开更多
Nitrate(NO_(3)^(-))accumulation and transport processes in the thick vadose zone affect the evolution of the groundwater NO_(3)^(-)content in intensive agricultural regions.Agricultural land-use change(ALUC),typically...Nitrate(NO_(3)^(-))accumulation and transport processes in the thick vadose zone affect the evolution of the groundwater NO_(3)^(-)content in intensive agricultural regions.Agricultural land-use change(ALUC),typically accompanied by substantial alterations in nitrogen fertilizer application and irrigation practices,is an important influencing factor.This study evaluated the changes in NO_(3)^(-)accumulation and transport in the deep vadose zone(DVZ,below the root zone),and the groundwater NO_(3)^(-)content associated with ALUC from grain to vegetable fields in the North China Plain(NCP).The ALUC from grain to vegetable resulted in nitrate–nitrogen(NO_(3)^(-)-N)accumulation in DVZ increased by 235.5 kg ha^(-1)m^(-1)(163.2%)in the piedmont plain and 224.9 kg ha^(-1)m^(-1)(102.7%)in the central plain,respectively.This change accelerated downward transport velocity in the DVZ(from 0.81±0.47 to 0.89±0.55 m yr^(-1)in the piedmont plain,and from 0.24±0.12 to 0.92±0.12 m yr^(-1)in the central plain)and increased NO_(3)^(-)leaching fluxes.High transport velocity and leaching fluxes resulted in chemical N-fertilizer entering the aquifer in several areas in the piedmont plain.The impact of the agricultural activity intensity changes,accompanied by the ALUC,on groundwater quantity and quality should be considered in similar regions.展开更多
The efficient electrocatalytic nitrate(NO_(3)^(−))reduction to ammonia(NRA)offers a sustainable alternative for both environmental remediation and ammonia synthesis.Developing advanced electrocatalysts with rationally...The efficient electrocatalytic nitrate(NO_(3)^(−))reduction to ammonia(NRA)offers a sustainable alternative for both environmental remediation and ammonia synthesis.Developing advanced electrocatalysts with rationally designed spatial arrangement of active sites and optimizing the synergetic effect among components are crucial for high efficiency and selectivity.Herein,we present Fe/N active sites decorated on porous carbon nanofibers(CNFs)with encapsulated FeCo nanoparticles(FeCo@CNFs-Fe/N)as electrocatalysts for NRA.The FeCo@CNFs-Fe/N catalyst demonstrates exceptional performance,achieving a high ammonia yield of 498.18μmol/(h·g_(cat)).Meanwhile,the enhanced reduction activity,especially the reduction in overpotential by 0.565 V,is 3–10 times higher than that of FeCo-encapsulated and Fe/N-modified CNFs-based catalysts.The enhanced catalytic activity is attributed to the efficient structure design and optimized spatial distribution of active sites,which enhance the electron transfer rate and decrease the reaction energy barrier.Mechanistic studies reveal that the synergetic effect between encapsulated nanoparticles and surface-modified Fe/N sites plays a crucial role in promoting efficient nitrate adsorption and selective ammonia production.These findings highlight the potential of strategically engineered CNF-based composites for nitrate reduction and other advanced electrocatalytic applications.展开更多
Electrochemical nitrate reduction(eNO_(3)RR)and nitric oxide reduction(eNORR)to ammonia have emerged as promising and sustainable alternatives to the traditional Haber-Bosch method for ammonia production,particularly ...Electrochemical nitrate reduction(eNO_(3)RR)and nitric oxide reduction(eNORR)to ammonia have emerged as promising and sustainable alternatives to the traditional Haber-Bosch method for ammonia production,particularly within the recently proposed reverse artificial nitrogen cycle route:N_(2)→NO_(x)→NH_(3).Notably,experimental studies have demonstrated that eNORR exhibits superior performance over eNO_(3)RR on Cu6Sn5 catalysts.However,the fundamental mechanisms underlying this difference remain poorly understood.Herein,we performed systematic theoretical calculations to explore the reaction pathways,electronic structure effects,and potential-dependent Faradic efficiency associated with ammonia production via these two distinct electrochemical pathways(eNORR and eNO_(3)RR)on Cu6Sn5.By implementing an advanced‘adaptive electric field controlled constant potential(EFC-CP)’methodology combined with microkinetic modeling,we successfully reproduced the experimental observations and identified the key factors affecting ammonia production in both reaction pathways.It was found that eNORR outperforms eNO_(3)RR because it circumvents the ^(*)NO_(2) dissociation and ^(*)NO_(2) desorption steps,leading to distinct surface coverage of key intermediates between the two pathways.Furthermore,the reaction rates were found to exhibit a pronounced dependence on the surface coverage of ^(*)NO in eNORR and ^(*)NO_(2) in eNO_(3)RR.Specifically,the facile desorption of ^(*)NO_(2) on the Cu6Sn5 surface in eNO_(3)RR limits the attainable surface coverage of ^(*)NO,thereby impeding its performance.In contrast,the eNORR can maintain a high surface coverage of adsorbed ^(*)NO species,contributing to its enhanced ammonia production performance.These fundamental insights provide valuable guidance for the rational design of catalysts and the optimization of reaction routes,facilitating the development of more efficient,sustainable,and scalable techniques for ammonia production.展开更多
Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater.However,the structure of bimetallic has been much less investigated for ...Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater.However,the structure of bimetallic has been much less investigated for catalyst optimization.Herein,two main types of Pd-Cu bimetallic nanocrystal structures,heterostructure and intermetallic,were prepared and characterized using high-resolution transmission electron microscopy(HRTEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The results show that two individual Pd and Cu nanocrystals with a mixed interface exist in the heterostructure nanocrystals,while Pd and Cu atoms are uniformly distributed across the intermetallic Pd-Cu nanocrystals.The catalytic nitrate reduction experiments were carried out in a semibatch reactor under constant hydrogen flow.The nitrate conversion rate of the heterostructure Pd-Cu nanocrystals supported onα-Al_(2)O_(3),γ-Al_(2)O_(3),SBA-15,and XC-72R exhibited 3.82-,6.76-,4.28-,2.44-fold enhancements relative to the intermetallic nanocrystals,and the nitrogen and nitrite were the main products for the heterostructure and intermetallic Pd-Cu nanocrystals,respectively.This indicates that the catalytic nitrate reduction over Pd-Cu catalyst is sensitive to the bimetallic structures of the catalysts,and heterostructure bimetallic nanocrystals exhibit better catalytic performances on both the activity and selectivity,which may provide new insights into the design and optimization of catalysts to improve catalytic activity and selectivity for nitrate reduction in water.展开更多
基金supported by the Natural Scientific Foundation of China(Nos.22127803,22174110,22203050)Natural Scientific Foundation of Shandong(No.ZR2022QB002)China Postdoctoral Science Foundation(No.2020T130331)。
文摘A novel Cu-t-ZrO_(2)catalyst with enhanced electronic metal-support interaction(EMSI)is designed for efficient electrocatalytic conversion of nitrate(NO_(3^(-)))to ammonia(NH_(3)),achieving a remarkable Faradaic efficiency and yield rate of 97.54%and 33.64 mg h^(-1)mg_(cat)^(-1),respectively.Electrons are more likely to be transferred from Cu to t-ZrO_(2)at the electron-rich interface due to the lower work function,which promotes the formation of highly active Cu species and facilitates NO_(3^(-))adsorption,ensuring selective conversion into NH_(3).
基金financially supported by the National Natural Science Foundation of China(Nos.22209040 and 22202063)。
文摘Zinc-nitrate battery could produce electrical power,remove pollutant nitrate and obtain value-added ammonia,where the cathodic reaction of converting nitrate to ammonia is sluggish and complex due to the involvement of multi-electron transfer.Thus,highly efficient catalysts for nitrate reduction reaction(NO_(3)RR)are greatly needed.In this work,we report a high entropy hydroxide(HE-OH)as an excellent NO3RR catalyst,which could achieve high NH_(3)Faradaic efficiencies(e.g.,nearly 100%at-0.3 V versus reversible hydrogen electrode)and high yield rates(e.g.,30.4 mg h^(-1)cm^(-2)at-0.4 V).Moreover,HE-OH could also deliver a current density of 10 mA/cm^(2) at an overpotential of 260 mV for oxygen evolution reaction.The assembled zinc-nitrate battery using HE-OH as the cathode demonstrates a high power density(e.g.,3.62 mW/cm^(2)),rechargeability and stability.
基金supported by National Natural Science Foundation of China(22162025)the Youth Innovation Team of Shaanxi Universities+2 种基金the Open and Innovation Fund of Hubei Three Gorges Laboratory(SK232001)the Regional Innovation Capability Leading Program of Shaanxi(2022QFY07-03,2022QFY07-06)the Shaanxi Province Training Program of Innovation and Entrepreneurship for Undergraduates(S202210719108)。
文摘Revealing the dynamic reconfiguration of catalysts and the evolution of active species during catalysis,elucidating and regulating the reconfiguration mechanism are paramount to the development of highperformance electrochemical nitrate reduction(NO_(3)RR)to ammonia.In-situ characterizations can precisely track reaction process and unveil the origin of activity enhancement.Here,in-situ reconstruction of pre-catalyst Co_(3)O_(4)fabricates a stable heterojunction Co(OH)_(2)/Co_(3)O_(4)to boost NO_(3)RR to ammonia.Insitu generated heterojunction accelerates the transformation of^(*)NO_(3)to^(*)NO_(2),while Co(OH)_(2)promotes the dissociation of water to active*H species for the hydrogenation of^(*)N species,and thereby improving the deoxygenation and hydrogenation ability of NO_(3)RR to NH_(3)and achieving a high Faradaic efficiency(FE)about 96.2%and a high NH_(3)production rate of 218.5μmol h^(-1)mg_(cat)^(-1)at-0.3 V.Density functional theory(DFT)calculations verified that in-situ formed active species Co(OH)_(2)on Co_(3)O_(4)markedly decreased the energy barrier of^(*)NO_(3)→^(*)NO_(2)and accelerated the hydrogenation step of^(*)NH→^(*)NH_(2)→^(*)NH_(3).Co(OH)_(2)/Co_(3)O_(4)heterostructure-based Zn-NO_(3)^(-)cell achieves excellent energy supply(1.22 V),a high ammonia yield rate(48.9μmol h^(-1)cm^(-2)),and a high FE(91%).The establishment of the structure-activity relationship during NO_(3)RR provides guidance for designing advanced electrode materials,and the in-situ evolution of species on the electrode surface unveils the intrinsic nature of improved catalytic performance.
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
基金National Natural Science Foundation of China (52371228, 52402045)fund of Key Laboratory of Advanced Materials of Ministry of Education(Advmat-2414)。
文摘Electrocatalytic nitrate reduction reaction (NO_(3)-RR) to ammonia under ambient conditions is expected to be a green process for ammonia synthesis and alleviate water pollution issues.We report a CuO nanoparticles incorporated on nitrogen-doped porous carbon (CuO@NC) catalyst for NO_(3)-RR.Part of Cu(Ⅱ) is reduced to Cu(Ⅰ) during the NO_(3)-RR process to construct Cu(Ⅰ)-Cu(Ⅱ) pairs,confirmed by in situ X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.Density functional theory (DFT) calculations indicated that the formation of Cu(Ⅰ) could provide a reaction path with smaller energy barrier for NO_(3)-RR,while Cu(Ⅱ) effectively suppressed the competition of hydrogen evolution reaction (HER).As a result,CuO@NC catalyst achieved a Faradaic efficiency of 84.2% at -0.49 V versus reversible hydrogen electrode (RHE),and a NH_(3)yield rate of 17.2 mg h^(-1)mg^(-1)cat.at -0.79 V vs.RHE,higher than the HaberBosch process (<3.4 g h^(-1)g^(-1)cat.).This work may open a new avenue for effective NO_(3)-RR by modulating oxidation states.
文摘Nitrate contamination of groundwater is a worldwide problem, particularly in agricultural countries. Exposure to high levels of nitrates in groundwater can have adverse effects on the health of residents who use groundwater for drinking. This study aims to assess the health risk associated with the ingestion of nitrates in well water in the town of M’bahiakro. Health risk maps were created on the basis of hazard quotients (HQ) using the US Environmental Protection Agency (USEPA) health risk assessment model. The results indicate that residents of the Koko, Dougouba and Baoulekro neighbourhoods, whatever their age, are potentially exposed to the toxic effects of NO3−during their daily intake of nitrate-contaminated well water, with reference to hazard quotients (HQ) greater than 1. Nitrate concentrations in the groundwater should therefore be controlled in order to prevent their harmful effects on the health of the population and guarantee its use in rice-growing activities in M’Bahiakro.
基金supported by the National Key Research and Development Program of China(No.2021YFC3201505-02)Shenzhen Science and Technology Plan Collaborative Innovation Project-Undertake Major National Science and Technology Projects of China(No.CJGJZD2020061710260200).
文摘Heterotrophic denitrification based on polylactic acid(PLAHD)can remove nitrate effectively,but it is expensive and can't remove phosphate.Autotrophic denitrification based on iron sulfide(ISAD)can simultaneously remove nitrate and phosphate cost-effectively,but its nitrate rate is slow.So,iron sulfide mineral/polylactic acid mixotrophic biofilter(ISPLAB)was constructed to combine advantages of ISAD and PLAHD.ISPLAB achieved nitrogen and phosphorus removal rates of 98.04%and 94.12%,respectively,at a hydraulic retention time(HRT)of 24 h.The study also revealed that controlling molecular weight(MW)of PLA improved the release of soluble organic matter;adding iron sulfide enhanced the hydrolysis of PLA and precipitated PO_(4)^(3-) of Fe^(2+)/Fe^(3+),thereby facilitated simultaneous nitrogen and phosphorus removal.Microbial community analysis resulted that denitrifying bacterias(Phaeodactylibacter and Methylotenera),sulfur-reducing bacterias(Hyphomicrobium),sulfur-oxidizing bacteria(Denitratisoma),iron-reducing bacteria(Romboutsia)and hydrolyzed bacterias(norank_f_norank_o_1-20 and norank_f_Caldilineaceae)coexisted in the ISPLAB system.Organics and iron sulfide drived the denitrification process in ISPLAB.
基金supported by the National Key R&D Program of China(No.2022YFC3701102)the National Natural Science Foundation of China(Nos.22376029,22176038,91744205 and 21777025)the Natural Science Foundation of Shanghai City(No.22ZR1404700).
文摘Nitrate renoxification significantly influences atmospheric nitrogen cycling and global OH budgets.Although numerous nitrite acid(HONO)formation pathways from nitrate photolysis have been widely reported,the influence of various environmental factors and aerosol properties on reactive nitrogen production remains largely unclear.In this work,we employed NaNO_(3)/humic acid(HA)as a model nitrate photosensitization system to investigate the crucial roles of aerosol acidity,organic fraction,and dissolved oxygen in the production of HONO,NO_(2),and NO_(2)^(-).The presence of HA at 10 mg/L resulted in a remarkable increase in HONO production rates by approximately 2–3 times and NO_(2)^(-) concentration by 3–6 times across a pH range of 5.2 to 2.0.Meanwhile,the molar fraction of gaseous HONO in total N(Ⅲ)production increased from4%to 69%as bulk-phase pH decreased from 5.2 to 2.0.The higher organic fraction(i.e.,20 and 50 mg/L HA concentration)instead inhibited HONO and NO_(2) release.The presence of dissolved oxygen was found to be adverse for reactive nitrogen production.This suggests that the HA photosensitizer promoted the secondary conversion of NO_(2) to HONO mainly via reduced ketyl radical intermediates,while superoxide radical formation might exert a negative effect.Our findings provide comprehensive insights into reactive nitrogen production from photosensitized nitrate photolysis mediated by various external and internal factors,potentially accounting for discrepancies between field observations and model simulations.
基金supported by the National Natural Science Foundation of China(No.32202963)the Natural Science Foundation of Jiangsu Province(No.BK20220681)+3 种基金the Doctoral Program of Entrepreneurship and Innovation in Jiangsu Province(No.JSSCBS20221625)the Scientific Research Foundation Program of Jiangsu Ocean University(No.KQ22009)the Undergraduate Innovation&Entrepreneurship Training Program of Jiangsu Province,China(No.SY202411641631001)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX2023-112).
文摘Due to the discharge of industrialwastewater,urban domestic sewage,and intensive marine aquaculture tailwater,nitrate(NO_(3)^(−))pollution has emerged as a significant issue in offshore waters.Nitrate pollution affects aquatic life and may interact with other pollutants,leading to comprehensive toxicity.Cadmium(Cd^(2+))is the most widespread metal contaminant,adversely affecting aquatic life in the coastal waters of China.Despite this,few studies have focused on the synergistic toxicity of NO_(3)^(−)and Cd^(2+)in marine organisms.This study conducted a 30-day exposure experiment on marine Japanese flounder(Paralichthys olivaceus)to explore the synergistic toxicity of NO_(3)^(−)and Cd^(2+).Our results demonstrated that the exposure to Cd^(2+)alone induced slight histopathological changes in the liver.However,malformations such as hepatic vacuolar degeneration and sinusoid dilatationwere exacerbated under co-exposure.Moreover,co-exposure induced the downregulation of antioxidants and the upregulation of the product malonaldehyde(MDA)from lipid peroxidation,indicating potent oxidative stress in the liver.The increased mRNA expression of IL-8,TNF-α,and IL-1β,along with the decreased expression level of TGF-β,indicated a synergistic inflammatory response in the organisms.Furthermore,the co-exposure led to an abnormal expression of P53,caspase-3,caspase-9,Bcl-2,and Bax,and disturbed the apoptosis in the liver through TUNEL staining analysis.Overall,our results imply that co-exposure synergistically affects inflammation,redox status,and apoptosis in flounders.Therefore,the findings from this study provide valuable perspectives on the ecological risk assessment of marine teleosts co-exposure to NO_(3)^(−)and Cd^(2+).
基金supported by grants from the National Natural Science Foundation of China (22178339)2023 Innovation-driven Development Special Foundation of Guangxi(AA23023021)the Hundred Talents Program (A) of the Chinese Academy of Sciences
文摘Red mud(RM)is a solid waste generated in the aluminum industry after the extraction of alumina oxide;its multiple elements and higher pH value likely pose a severe threat to the environment after treatment.However,RM's higher concentrations of metal components,particularly Fe_(2)O_(3)and rare earth elements(REEs),render RM promising for catalytic application.Hence,this work showed an efficient high-speed RM to catalyze electrocatalytic nitrate-to-ammonia reduction reaction(NARR).RM calcined at 500℃(RM-500)exhibited excellent catalytic performance.Faradaic efficiency of ammonia(FENH_(3))in an electrolyte solution containing 1 mol·L^(-1)NO_(3)-achieved a maximum value of 92.3%at-0.8 V(vs.RHE).Additionally,24-h cycle testing and post-reaction PXRD and SEM indicated that the RM-500 electrocatalyst is stable during NARR.The RM-500 demonstrated a high FE of NH_(3)-to-NO_(3)-of 89.7%at 1.85 V(vs.RHE),showing great potential in the ammonia fuel cells technology and achieving the nitrogen cycle.
基金supported in part by National Natural Science Foundation of China(No.51925102)National Key R&D Program of China(No.2022YFA1504101)。
文摘In this work,an effective catalyst of Cu/MnOOH has been successfully constructed for electrochemical nitrate reduction reaction(e NO_(3)RR)for synthesis of ammonia(NH_(3))under ambient conditions.The substrate of MnOOH plays an important role on the size and electronic structure of Cu nanoparticles,where Cu has the ultrafine size of 2.2 nm and positive shift of its valence states,which in turn causes the increased number of Cu active sites and enhanced intrinsic activity of every active site.As a result,this catalyst realizes an excellent catalytic performance on eNO_(3)RR with the maximal NH_(3)Faraday efficiency(FE)(96.8%)and the highest yield rate(55.51 mg h^(-1)cm^(-2))at a large NH_(3)partial current density of700 m A/cm^(2),which could help to promote the industrialization of NH_(3)production under ambient conditions.
文摘Electrocatalytic conversion of nitrate to ammonia(NITRR)can simultaneously achieve the removal of nitrate and the synthesis of value-added ammonia,a promising candidate to replace Haber-Bosch process with low carbon dioxide emissions.However,high hydrogenation energy barrier for*NO intermediates and insufficient supply of active hydrogen cause slow hydrogenation process,and further result in low efficiency of nitrate conversion and ammonia synthesis.Herein,a series of tandem catalysts,one-dimensional coordination polymers(1D CCPs)with dual sites are synthesized and obtained 190.4 mg h^(-1)mgcat^(-1)ammonia production rate with Faradaic efficiency of 97.16%,outperforming to the most of recent reported catalysts.The catalytic performances are well-maintained even after a long-term stability test of 1200 h,laying the foundation for practical applications.Density functional theory results reveal that the stationary adsorbed*NO on Ni site induced proximity electronic effect could reduce the energy barrier for hydrogenation of*NO intermediates over Cu site.In addition,the Ni site in the dual sites 1D CCPs is conducive to generating active hydrogen,providing rich proton source to boost the hydrogenation of*NO,and further enhancing the compatibility of deoxygenation and hydrogenation process.Our work paves a new insight into the mechanism of NITRR process and will inspire more research interests in exploring the proximity electronic effect in catalytic process.
基金supported by the National Natural Science Foundation of China(No.U22A20253)。
文摘Electrochemical reduction of nitrate(NO_(3^(-)))serves as an eco-friendly friendly alternative to the conventional Haber-Bosch ammonia(NH_(3))synthesis process.The Cu electrocatalyst is widely recognized for its strong adsorption capacity towards nitrate,but its limited H adsorption and slow hydrogenation of oxynitride intermediates hinder the efficiency of converting NO_(3^(-))into NH_(3).Herein,a series of nanocomposite catalysts composed of CuO nanostructure with low NiO content that grow in-situ on carbon paper(Cu O/Ni O_(x)-CP)were synthesized via hydrothermal method and calcination for enhanced nitrate electroreduction utilizing the strong nitrate adsorption capacity of copper and excellent water dissociation ability of NiO to supply hydrogen free radicals(·H).In-situ Raman spectroscopy reveals dynamic reconstruction of Cu/NiO_(x)during the electrochemical nitrate reduction process from Cu O/NiO_(x).Due to the synergistic effect of Cu and NiO,a high Faradaic efficiency(FE,~97.9%)and yield rate(YR,391.5μmol h^(-1)cm^(-2))of ammonia are achieved on CuO/NiO_(2.3%)-CP.Electron paramagnetic resonance(EPR)proves that the presence of Ni O enhances the generation of·H,which can be rapidly consumed during nitrate reduction process.Density functional theory(DFT)calculations indicate that the activation energy of Ni O(0.57 eV)is much lower than Cu(0.84 e V)for water splitting to generate·H,thus facilitating*NO hydrogenations.This drives us to create more effective catalysts for nitrate reduction under neutral conditions by promoting H2O dissociation.
基金supported by the National Key Research and Development Program of China(2023YFE0120900)the National Natural Science Foundation of China(52377160)+2 种基金the National Natural Science Foundation of China National Young Talents Project(GYKP010)Shaanxi Provincial Natural Science Program(2023-JCYB-425)Xi’an Jiaotong University Young Top Talents Program。
文摘Ammonia is the cornerstone of modern agriculture,providing a critical nitrogen source for global food production and serving as a key raw material for numerous industrial chemicals.Electrocatalytic nitrate reduction,as an environmentally friendly method for synthesizing ammonia,not only mitigates the reliance on current ammonia synthesis processes fed by traditional fossil fuels but also effectively reduces nitrate pollution resulting from agricultural and industrial activities.This review explores the fundamental principles of electrocata lytic nitrate reduction,focusing on the key steps of electron transfer and ammonia formation.Additionally,it summarizes the critical factors influencing the performance and selectivity of the reaction,including the properties of the electrolyte,operating voltage,electrode materials,and design of the electrolytic cell.Further discussion of recent advances in electrocatalysts,including pure metal catalysts,metal oxide catalysts,non-metallic catalysts,and composite catalysts,highlights their significant roles in enhancing both the efficiency and selectivity of electrocata lytic nitrate to ammonia(NRA)reactions.Critical challenges for the industrial NRA trials and further outlooks are outlined to propel this strategy toward real-world applications.Overall,the review provides an in-depth overview and comprehensive understanding of electrocata lytic NRA technology,thereby promoting further advancements and innovations in this domain.
基金supported by the National Key Research and Development Program of China (2023YFD1902703)the National Natural Science Foundation of China (Key Program) (U23A20158)。
文摘Cropland nitrate leaching is the major nitrogen(N) loss pathway, and it contributes significantly to water pollution. However, cropland nitrate leaching estimates show great uncertainty due to variations in input datasets and estimation methods. Here, we presented a re-evaluation of Chinese cropland nitrate leaching, and identified and quantified the sources of uncertainty by integrating three cropland area datasets, three N input datasets, and three estimation methods. The results revealed that nitrate leaching from Chinese cropland averaged 6.7±0.6 Tg N yr^(-1)in 2010, ranging from 2.9 to 15.8 Tg N yr^(-1)across 27 different estimates. The primary contributor to the uncertainty was the estimation method, accounting for 45.1%, followed by the interaction of N input dataset and estimation method at 24.4%. The results of this study emphasize the need for adopting a robust estimation method and improving the compatibility between the estimation method and N input dataset to effectively reduce uncertainty. This analysis provides valuable insights for accurately estimating cropland nitrate leaching and contributes to ongoing efforts that address water pollution concerns.
基金the National Natural Science Foundation of China(22308358,22208346,22421003)IPE Project for Frontier Basic Research(QYJC-2023-05)+1 种基金National Key Research and Development Program(2022YFC3902701)CAS Project for Young Scientists in Basic Research(YSBR-038).
文摘The purity of electronic-grade chemicals significantly impacts electronic components.Although crystallization has been used to purify cerium ammonium nitrate(CAN),the impurity removal mechanism underlying different crystallization parameters remains unclear.Traditional analytical methods of inductively coupled plasma mass spectrometry(ICP-MS)have problems in detecting trace Fe accurately,because of the high concentration of Ce and interference of polyatomic ions.Therefore,this study developed a new method integrating the standard addition and internal standard methods and explored the role of the kinetic energy discrimination mode.This new approach effectively overcomes Ce-related matrix interference and fills the gap in ultra-trace impurity detection.Furthermore,the study investigated the effects of cooling rate,seed mass loading and seed size on the removal of Fe impurity.The seed mass loading affects the average crystal size through regulating secondary nucleation and crystal growth.The removal of Fe in CAN is determined by surface adsorption and agglomeration.Under the condition of the cooling rate of 0.2 K·min^(-1),and addition of 0.5%(mass)600-680 μm seeds,the Fe content is the lowest,at only 0.24 mg·L^(-1),and the Fe removal rate reaches 92.28%.
基金National Natural Science Foundation of China,No.41930865Project for Innovative Capacity Improvement in Hebei Province,No.225A4201D。
文摘Nitrate(NO_(3)^(-))accumulation and transport processes in the thick vadose zone affect the evolution of the groundwater NO_(3)^(-)content in intensive agricultural regions.Agricultural land-use change(ALUC),typically accompanied by substantial alterations in nitrogen fertilizer application and irrigation practices,is an important influencing factor.This study evaluated the changes in NO_(3)^(-)accumulation and transport in the deep vadose zone(DVZ,below the root zone),and the groundwater NO_(3)^(-)content associated with ALUC from grain to vegetable fields in the North China Plain(NCP).The ALUC from grain to vegetable resulted in nitrate–nitrogen(NO_(3)^(-)-N)accumulation in DVZ increased by 235.5 kg ha^(-1)m^(-1)(163.2%)in the piedmont plain and 224.9 kg ha^(-1)m^(-1)(102.7%)in the central plain,respectively.This change accelerated downward transport velocity in the DVZ(from 0.81±0.47 to 0.89±0.55 m yr^(-1)in the piedmont plain,and from 0.24±0.12 to 0.92±0.12 m yr^(-1)in the central plain)and increased NO_(3)^(-)leaching fluxes.High transport velocity and leaching fluxes resulted in chemical N-fertilizer entering the aquifer in several areas in the piedmont plain.The impact of the agricultural activity intensity changes,accompanied by the ALUC,on groundwater quantity and quality should be considered in similar regions.
基金supported by Shanghai Science and Technology Plan Project(No.23ZR1467000)the Fundamental Research Funds for the Central University(No.22120240354)+1 种基金the National Natural Science Foundation of China(No.22131004)the Leading Scientific Research Project from China National Nuclear Corporation(No.CNNC–CXLM-202205).
文摘The efficient electrocatalytic nitrate(NO_(3)^(−))reduction to ammonia(NRA)offers a sustainable alternative for both environmental remediation and ammonia synthesis.Developing advanced electrocatalysts with rationally designed spatial arrangement of active sites and optimizing the synergetic effect among components are crucial for high efficiency and selectivity.Herein,we present Fe/N active sites decorated on porous carbon nanofibers(CNFs)with encapsulated FeCo nanoparticles(FeCo@CNFs-Fe/N)as electrocatalysts for NRA.The FeCo@CNFs-Fe/N catalyst demonstrates exceptional performance,achieving a high ammonia yield of 498.18μmol/(h·g_(cat)).Meanwhile,the enhanced reduction activity,especially the reduction in overpotential by 0.565 V,is 3–10 times higher than that of FeCo-encapsulated and Fe/N-modified CNFs-based catalysts.The enhanced catalytic activity is attributed to the efficient structure design and optimized spatial distribution of active sites,which enhance the electron transfer rate and decrease the reaction energy barrier.Mechanistic studies reveal that the synergetic effect between encapsulated nanoparticles and surface-modified Fe/N sites plays a crucial role in promoting efficient nitrate adsorption and selective ammonia production.These findings highlight the potential of strategically engineered CNF-based composites for nitrate reduction and other advanced electrocatalytic applications.
文摘Electrochemical nitrate reduction(eNO_(3)RR)and nitric oxide reduction(eNORR)to ammonia have emerged as promising and sustainable alternatives to the traditional Haber-Bosch method for ammonia production,particularly within the recently proposed reverse artificial nitrogen cycle route:N_(2)→NO_(x)→NH_(3).Notably,experimental studies have demonstrated that eNORR exhibits superior performance over eNO_(3)RR on Cu6Sn5 catalysts.However,the fundamental mechanisms underlying this difference remain poorly understood.Herein,we performed systematic theoretical calculations to explore the reaction pathways,electronic structure effects,and potential-dependent Faradic efficiency associated with ammonia production via these two distinct electrochemical pathways(eNORR and eNO_(3)RR)on Cu6Sn5.By implementing an advanced‘adaptive electric field controlled constant potential(EFC-CP)’methodology combined with microkinetic modeling,we successfully reproduced the experimental observations and identified the key factors affecting ammonia production in both reaction pathways.It was found that eNORR outperforms eNO_(3)RR because it circumvents the ^(*)NO_(2) dissociation and ^(*)NO_(2) desorption steps,leading to distinct surface coverage of key intermediates between the two pathways.Furthermore,the reaction rates were found to exhibit a pronounced dependence on the surface coverage of ^(*)NO in eNORR and ^(*)NO_(2) in eNO_(3)RR.Specifically,the facile desorption of ^(*)NO_(2) on the Cu6Sn5 surface in eNO_(3)RR limits the attainable surface coverage of ^(*)NO,thereby impeding its performance.In contrast,the eNORR can maintain a high surface coverage of adsorbed ^(*)NO species,contributing to its enhanced ammonia production performance.These fundamental insights provide valuable guidance for the rational design of catalysts and the optimization of reaction routes,facilitating the development of more efficient,sustainable,and scalable techniques for ammonia production.
基金support from the National Natural Science Foundation of China(Nos.52370100,52000146,and 51978098)China Postdoctoral Science Foundation(No.2020M673351).
文摘Catalytic reduction of nitrate over bimetallic catalysts has emerged as a technology for sustainable treatment of nitrate-containing groundwater.However,the structure of bimetallic has been much less investigated for catalyst optimization.Herein,two main types of Pd-Cu bimetallic nanocrystal structures,heterostructure and intermetallic,were prepared and characterized using high-resolution transmission electron microscopy(HRTEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The results show that two individual Pd and Cu nanocrystals with a mixed interface exist in the heterostructure nanocrystals,while Pd and Cu atoms are uniformly distributed across the intermetallic Pd-Cu nanocrystals.The catalytic nitrate reduction experiments were carried out in a semibatch reactor under constant hydrogen flow.The nitrate conversion rate of the heterostructure Pd-Cu nanocrystals supported onα-Al_(2)O_(3),γ-Al_(2)O_(3),SBA-15,and XC-72R exhibited 3.82-,6.76-,4.28-,2.44-fold enhancements relative to the intermetallic nanocrystals,and the nitrogen and nitrite were the main products for the heterostructure and intermetallic Pd-Cu nanocrystals,respectively.This indicates that the catalytic nitrate reduction over Pd-Cu catalyst is sensitive to the bimetallic structures of the catalysts,and heterostructure bimetallic nanocrystals exhibit better catalytic performances on both the activity and selectivity,which may provide new insights into the design and optimization of catalysts to improve catalytic activity and selectivity for nitrate reduction in water.