Maize (Zea mays) is among the major cereals grown in the high rainfall areas of the subSaharan Africa’s (SSA) such as the Ethiopian part of the Blue Nile basin. However, its productivity is severely constrained by po...Maize (Zea mays) is among the major cereals grown in the high rainfall areas of the subSaharan Africa’s (SSA) such as the Ethiopian part of the Blue Nile basin. However, its productivity is severely constrained by poor soil, water and crop management practices. This study simulated the water productivity of the crop under varying soil fertility scenarios (poor, near optimal and none limiting) using hybrid seeds under rainfed conditions using the FAO AquaCrop model. The result indicated that grain yield of maize increased from 2.5 tons.ha–1 under poor to 6.4 and 9.2 tons.ha–1 with near optimal and non-limiting soil fertility conditions. Correspondingly, soil evaporation decreased from 446 mm to 285 and 204 mm, while transpiration increased from 146 to 268 and 355 mm. Consequently, grain water productivity was increased by 48% and 54%, respectively, with the near optimal and non-limiting soil fertility conditions. The water productivity gain mainly comes from reduced evaporation and increased transpiration without significantly affecting water left for downstream ecosystem services. This has a huge implication for a basin scale water management planning for various purposes.展开更多
The objective of this study is to identify the management options for a Nitisol ofKibwezi area, Machakos District, Kenya. The management problems identified were: highexchangeable sodium percentage (ESP), 6-30; low or...The objective of this study is to identify the management options for a Nitisol ofKibwezi area, Machakos District, Kenya. The management problems identified were: highexchangeable sodium percentage (ESP), 6-30; low organic carbon, 0.73-1.0; compactB-horizon; and low moisture retention capacity, 70 mm/ m. More than 40% of the total volume of the topsoil contained pores of effective展开更多
Maize production in Kenya is constrained by weed infestation and nutrient deficiencies. Field studies were conducted during the 2008/2009 cropping seasons to investigate weeds in maize fields on three dominant soil ty...Maize production in Kenya is constrained by weed infestation and nutrient deficiencies. Field studies were conducted during the 2008/2009 cropping seasons to investigate weeds in maize fields on three dominant soil types in Western Kenya. Weeds were inventoried and their composition was compared using Jaccard's index. The economic importance of weed species (potential to reduce yields and the difficulty to control them by manual weeding) was assessed through participatory surveys. Finally, field trials assessed the effects of management options (farmer's practice, clean weeding, green manure, zero-tillage + cover crop and zero-tillage) on weed biomass and species composition. Across the three soil types, 55 weed species in 21 families were identified. Soil types influenced species composition as confirmed by Jaccard's similarity indices of 0.50, 0.58 and 0.62 for Nitisol vs. Acrisol, Ferralsol vs. Acrisol and Nitisol vs. Ferralsol, respectively. The economically important weeds were Commelina benghalensis, Cynodon nlemfuensis, Bidens pilosa, Galinsoga parviflora and Leonotis nepetifolia. Management options significantly (P 〈 0.05) reduced weed biomass, irrespective of soil type and seasons. Maize biomass response was highest (7-16 Mg ha1) in zero-tillage and zero-tillage + cover crop and lowest (2-8 Mg ha1) in farmer's practice. Significantly negative relationships (P 〈 0.01, r2 = 0.37 - 0.51) were established between leaf area index of maize and weed biomass across the soils. Zero-tillage combined with the use of a cover crop had the lowest weed biomass (〈 30% of the farmer practice) and thus appears to be a promising strategy combining soil fertility improvement with weed suppression in smallholder maize farming systems of Western Kenya.展开更多
文摘Maize (Zea mays) is among the major cereals grown in the high rainfall areas of the subSaharan Africa’s (SSA) such as the Ethiopian part of the Blue Nile basin. However, its productivity is severely constrained by poor soil, water and crop management practices. This study simulated the water productivity of the crop under varying soil fertility scenarios (poor, near optimal and none limiting) using hybrid seeds under rainfed conditions using the FAO AquaCrop model. The result indicated that grain yield of maize increased from 2.5 tons.ha–1 under poor to 6.4 and 9.2 tons.ha–1 with near optimal and non-limiting soil fertility conditions. Correspondingly, soil evaporation decreased from 446 mm to 285 and 204 mm, while transpiration increased from 146 to 268 and 355 mm. Consequently, grain water productivity was increased by 48% and 54%, respectively, with the near optimal and non-limiting soil fertility conditions. The water productivity gain mainly comes from reduced evaporation and increased transpiration without significantly affecting water left for downstream ecosystem services. This has a huge implication for a basin scale water management planning for various purposes.
文摘The objective of this study is to identify the management options for a Nitisol ofKibwezi area, Machakos District, Kenya. The management problems identified were: highexchangeable sodium percentage (ESP), 6-30; low organic carbon, 0.73-1.0; compactB-horizon; and low moisture retention capacity, 70 mm/ m. More than 40% of the total volume of the topsoil contained pores of effective
文摘Maize production in Kenya is constrained by weed infestation and nutrient deficiencies. Field studies were conducted during the 2008/2009 cropping seasons to investigate weeds in maize fields on three dominant soil types in Western Kenya. Weeds were inventoried and their composition was compared using Jaccard's index. The economic importance of weed species (potential to reduce yields and the difficulty to control them by manual weeding) was assessed through participatory surveys. Finally, field trials assessed the effects of management options (farmer's practice, clean weeding, green manure, zero-tillage + cover crop and zero-tillage) on weed biomass and species composition. Across the three soil types, 55 weed species in 21 families were identified. Soil types influenced species composition as confirmed by Jaccard's similarity indices of 0.50, 0.58 and 0.62 for Nitisol vs. Acrisol, Ferralsol vs. Acrisol and Nitisol vs. Ferralsol, respectively. The economically important weeds were Commelina benghalensis, Cynodon nlemfuensis, Bidens pilosa, Galinsoga parviflora and Leonotis nepetifolia. Management options significantly (P 〈 0.05) reduced weed biomass, irrespective of soil type and seasons. Maize biomass response was highest (7-16 Mg ha1) in zero-tillage and zero-tillage + cover crop and lowest (2-8 Mg ha1) in farmer's practice. Significantly negative relationships (P 〈 0.01, r2 = 0.37 - 0.51) were established between leaf area index of maize and weed biomass across the soils. Zero-tillage combined with the use of a cover crop had the lowest weed biomass (〈 30% of the farmer practice) and thus appears to be a promising strategy combining soil fertility improvement with weed suppression in smallholder maize farming systems of Western Kenya.