Postoperative tumor recurrence remains a predominant cause of treatment failure. In this study, we developed an in situ injectable hydrogel, termed MPB-NO@DOX + ATRA gel, which was locally formed within the tumor rese...Postoperative tumor recurrence remains a predominant cause of treatment failure. In this study, we developed an in situ injectable hydrogel, termed MPB-NO@DOX + ATRA gel, which was locally formed within the tumor resection cavity. The MPB-NO@DOX + ATRA gel was fabricated by mixing a thrombin solution, a fibrinogen solution containing all-trans retinoic acid (ATRA), and a Mn/NO-based immune nano-activator termed MPB-NO@DOX. ATRA promoted the differentiation of cancer stem cells, inhibited cancer cell migration, and affected the polarization of tumor-associated macrophages. The outer MnO2 shell disintegrated due to its reaction with glutathione and hydrogen peroxide in the cytoplasm to release Mn2+ and produce O2, resulting in the release of doxorubicin (DOX). The released DOX entered the nucleus and destroyed DNA, and the fragmented DNA cooperated with Mn2+ to activate the cGAS-STING pathway and stimulate an anti-tumor immune response. In addition, when MPB-NO@DOX was exposed to 808 nm laser irradiation, the Fe-NO bond was broken to release NO, which downregulated the expression of PD-L1 on the surface of tumor cells and reversed the immunosuppressive tumor microenvironment. In conclusion, the MPB-NO@DOX + ATRA gel exhibited excellent anti-tumor efficacy. The results of this study demonstrated the great potential of in situ injectable hydrogels in preventing postoperative tumor recurrence.展开更多
Hydrolysis reactions are capable of directing the non-equilibrium assembly of biomolecular scaffolds to realize sophisticated structures and functions in natural systems.However,utilizing the proper hydrolysis reactio...Hydrolysis reactions are capable of directing the non-equilibrium assembly of biomolecular scaffolds to realize sophisticated structures and functions in natural systems.However,utilizing the proper hydrolysis reactions to construct controlled assemblies with complex topologies is still an arduous challenge in artificial systems and needs to be addressed.Herein,we report a nitric oxide(NO)-triggered slow hydrolysis strategy for the controlled construction of biomimetic supramolecular toroids(STs),thus realizing their visualization of intermediate structures and regulation of geometry parameters.This presented protocol harnesses hydrolysis reactions to control of non-equilibrium self-assembly processes for the construction of self-assemblies with complex topologies successfully,which sheds light on how the hydrolysis reaction rate can modulate the kinetic pathway of assembly,thus realizing the artificial establishment of bio-inspired hierarchical structures.展开更多
基金supported by the National Natural Science Foundation of China(No.82003298)the Scientiffc and Technological Project of Henan Province(No.232102310392)+5 种基金the Key Research and Development Projects of Henan Province(No.222102310453,212102311025)Postdoctoral Research Grant in Henan Province(No.201901025)the Key Research Project of Henan Higher Education Institutions(No.18A350003)Open Fund of Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases,Henan Province(No.NMZL2020102)the Natural Science Foundation of Chongqing(No.cstc2019jcyj-msxmX0035)the Scientiffc Research Seedling Project of Chongqing Medicinal Biotechnology Association(No.cmba2022kyym-zkxmQ0009).
文摘Postoperative tumor recurrence remains a predominant cause of treatment failure. In this study, we developed an in situ injectable hydrogel, termed MPB-NO@DOX + ATRA gel, which was locally formed within the tumor resection cavity. The MPB-NO@DOX + ATRA gel was fabricated by mixing a thrombin solution, a fibrinogen solution containing all-trans retinoic acid (ATRA), and a Mn/NO-based immune nano-activator termed MPB-NO@DOX. ATRA promoted the differentiation of cancer stem cells, inhibited cancer cell migration, and affected the polarization of tumor-associated macrophages. The outer MnO2 shell disintegrated due to its reaction with glutathione and hydrogen peroxide in the cytoplasm to release Mn2+ and produce O2, resulting in the release of doxorubicin (DOX). The released DOX entered the nucleus and destroyed DNA, and the fragmented DNA cooperated with Mn2+ to activate the cGAS-STING pathway and stimulate an anti-tumor immune response. In addition, when MPB-NO@DOX was exposed to 808 nm laser irradiation, the Fe-NO bond was broken to release NO, which downregulated the expression of PD-L1 on the surface of tumor cells and reversed the immunosuppressive tumor microenvironment. In conclusion, the MPB-NO@DOX + ATRA gel exhibited excellent anti-tumor efficacy. The results of this study demonstrated the great potential of in situ injectable hydrogels in preventing postoperative tumor recurrence.
基金supported by the National Science Foundation of China(22071197,22022107,82304889)。
文摘Hydrolysis reactions are capable of directing the non-equilibrium assembly of biomolecular scaffolds to realize sophisticated structures and functions in natural systems.However,utilizing the proper hydrolysis reactions to construct controlled assemblies with complex topologies is still an arduous challenge in artificial systems and needs to be addressed.Herein,we report a nitric oxide(NO)-triggered slow hydrolysis strategy for the controlled construction of biomimetic supramolecular toroids(STs),thus realizing their visualization of intermediate structures and regulation of geometry parameters.This presented protocol harnesses hydrolysis reactions to control of non-equilibrium self-assembly processes for the construction of self-assemblies with complex topologies successfully,which sheds light on how the hydrolysis reaction rate can modulate the kinetic pathway of assembly,thus realizing the artificial establishment of bio-inspired hierarchical structures.