Identification of fluorescent biomarkers with peptide ligand-directed receptors for diagnosis or theranostic of pancreatic ductal adenocarcinoma (PDAC) is still challenging. As potential prognostic/predictive bioimagi...Identification of fluorescent biomarkers with peptide ligand-directed receptors for diagnosis or theranostic of pancreatic ductal adenocarcinoma (PDAC) is still challenging. As potential prognostic/predictive bioimaging targets, both aminopeptidase N(APN, known as CD13) and Caveolin-1 are found as upregulation on the cell membrane surface of PDAC, in which APN is the principal receptor of the cyclic peptide cNGR (Asn-Gly-Arg, NGR) and Caveolin-1 can synergistically mediate endocytosis in this receptor-targeted process. Herein, we conjugate cNGR to dicyanomethylene-4H-pyran (DCM) chromophore to develop a synergistic-targeted near-infrared (NIR) fluorescent probe DCM-cNGR with strongly intrinsic NIR fluorescence, stable optical performance, low cytotoxicity, and rapid accumulation in PANC-1 cells with the synergistic overexpressed APN receptor-targeted and Caveolin-1-mediated endocytosis. As demonstrated, DCM-cNGR can realize noninvasive NIR imaging for targeting PANC-1 tumor in vivo after intravenous injection into PANC-1 xenograft tumor of nude mice, making a great promise to improve the precision diagnosis and therapy of pancreatic cancer with real time tracing and bioimaging of PDAC in vitro and in vivo.展开更多
基金supported by the National Basic Research Program of China (2013CB733700)the National Natural Science Foundation of China for Creative Research Groups (21421004)+6 种基金Key Project (21636002)Distinguished Young Scholars (21325625)NSFC/Chinathe Oriental ScholarshipScience and Technology Commission of Shanghai Municipality (15XD1501400)the Fundamental Research Funds for the Central Universities (222201717003)Program of Introducing Talents of Discipline to Universities (B16017)
文摘Identification of fluorescent biomarkers with peptide ligand-directed receptors for diagnosis or theranostic of pancreatic ductal adenocarcinoma (PDAC) is still challenging. As potential prognostic/predictive bioimaging targets, both aminopeptidase N(APN, known as CD13) and Caveolin-1 are found as upregulation on the cell membrane surface of PDAC, in which APN is the principal receptor of the cyclic peptide cNGR (Asn-Gly-Arg, NGR) and Caveolin-1 can synergistically mediate endocytosis in this receptor-targeted process. Herein, we conjugate cNGR to dicyanomethylene-4H-pyran (DCM) chromophore to develop a synergistic-targeted near-infrared (NIR) fluorescent probe DCM-cNGR with strongly intrinsic NIR fluorescence, stable optical performance, low cytotoxicity, and rapid accumulation in PANC-1 cells with the synergistic overexpressed APN receptor-targeted and Caveolin-1-mediated endocytosis. As demonstrated, DCM-cNGR can realize noninvasive NIR imaging for targeting PANC-1 tumor in vivo after intravenous injection into PANC-1 xenograft tumor of nude mice, making a great promise to improve the precision diagnosis and therapy of pancreatic cancer with real time tracing and bioimaging of PDAC in vitro and in vivo.