Recently, convolutional neural networks (CNNs) have been utilized in medical imaging research field and have successfully shown their ability in image classification and detection. In this paper we used a CNN combined...Recently, convolutional neural networks (CNNs) have been utilized in medical imaging research field and have successfully shown their ability in image classification and detection. In this paper we used a CNN combined with a wavelet transform approach for classifying a dataset of 448 lung CT images into 4 categories, e.g. lung adenocarcinoma, lung squamous cell carcinoma, metastatic lung cancer, and normal. The key difference between the commonly-used CNNs and the presented method is that in this method, we adopt the use of redundant wavelet coefficients at level 1 as inputs to the CNN, instead of using original images. One of the main advantages of the proposed method is that it is not necessary to extract regions of interest from original images. The wavelet coefficients of the entire image are used as inputs to the CNN. We compare the classification performance of the proposed method to that of an existing CNN classifier and a CNN-based support vector machine classifier. The experimental results show that the proposed method outperforms the other two methods and achieve the highest overall accuracy of 91.9%. It demonstrates the potential for use in classification of lung diseases in CT images.展开更多
Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces ...Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.展开更多
Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies...Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies,it can also create new cyber threats,such as vulnerabilities in trust and malicious node injection.Denialof-Service(DoS)attacks can stop many forms of operations by overwhelming networks and systems with data noise.Current anomaly detection methods require extensive software changes and only detect static threats.Data collection is important for being accurate,but it is often a slow,tedious,and sometimes inefficient process.This paper proposes a new wavelet transformassisted Bayesian deep learning based probabilistic(WT-BDLP)approach tomitigate malicious data injection attacks in 6G edge networks.The proposed approach combines outlier detection based on a Bayesian learning conditional variational autoencoder(Bay-LCVariAE)and traffic pattern analysis based on continuous wavelet transform(CWT).The Bay-LCVariAE framework allows for probabilistic modelling of generative features to facilitate capturing how features of interest change over time,spatially,and for recognition of anomalies.Similarly,CWT allows emphasizing the multi-resolution spectral analysis and permits temporally relevant frequency pattern recognition.Experimental testing showed that the flexibility of the Bayesian probabilistic framework offers a vast improvement in anomaly detection accuracy over existing methods,with a maximum accuracy of 98.21%recognizing anomalies.展开更多
Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,...Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models.展开更多
Computerized tomography (CT) scan is the only screening test recommended by doctors to look for lung cancer. Convolutional neural networks (CNNs) have recently proven their ability to successfully classify medical ima...Computerized tomography (CT) scan is the only screening test recommended by doctors to look for lung cancer. Convolutional neural networks (CNNs) have recently proven their ability to successfully classify medical images. Due to its strong compactness property, the Discrete Wavelet transform (DWT) has been commonly used in image feature extraction applications. This paper presents a novel technique for the classification of Lung cancer in Computerized Tomography (CT) scans using Wavelets to find discriminative features in the CT images and CNN to classify the extracted features. Experimental results prove that the proposed approach outperforms other commonly used methods and gives an overall accuracy of 99.5%.展开更多
The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation app...The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation approaches have been proposed recently.However,the following problems remain in existing methods:1)Most network models use raw data or statistical features as input,which renders it difficult to extract complex fault-related information hidden in signals;2)for current observations,the dependence between current states is emphasized,but their complex dependence on previous states is often disregarded;3)the output of neural networks is directly used as the estimated RUL in most studies,resulting in extremely volatile prediction results that lack robustness.Hence,a novel prognostics approach is proposed based on a time-frequency representation(TFR)subsequence,three-dimensional convolutional neural network(3DCNN),and Gaussian process regression(GPR).The approach primarily comprises two aspects:construction of a health indicator(HI)using the TFR-subsequence-3DCNN model,and RUL estimation based on the GPR model.The raw signals of the bearings are converted into TFR-subsequences by continuous wavelet transform and a dislocated overlapping strategy.Subsequently,the 3DCNN is applied to extract the hidden spatiotemporal features from the TFR-subsequences and construct HIs.Finally,the RUL of the bearings is estimated using the GPR model,which can also define the probability distribution of the potential function and prediction confidence.Experiments on the PRONOSTIA platform demonstrate the superiority of the proposed TFR-subsequence-3DCNN-GPR approach.The use of degradation-related spatiotemporal features in signals is proposed herein to achieve a highly accurate bearing RUL prediction with uncertainty quantification.展开更多
Fault diagnosis technology has been widely applied and is an important part of ensuring the safe operation of mechanical equipment.In response to the problem of frequent faults in rolling bearings,this paper designs a...Fault diagnosis technology has been widely applied and is an important part of ensuring the safe operation of mechanical equipment.In response to the problem of frequent faults in rolling bearings,this paper designs a rolling bearing fault diagnosis method based on convolutional capsule network(CCN).More specifically,the original vibration signal is converted into a two-dimensional time–frequency image using continuous wavelet transform(CWT),and the feature extraction is performed on the two-dimensional time–frequency image using the convolution layer at the front end of the network,and the extracted features are input into the capsule network.The capsule network converts the extracted features into vector neurons,and the dynamic routing algorithm is used to achieve feature transfer and output the results of fault diagnosis.Two different datasets are used to compare with other traditional deep learning models to verify the fault diagnosis capability of the method.The results show that the CCN has good diagnostic capability under different working conditions,even in the presence of noise and insufficient samples,compared to other models.This method contributes to the safe and reliable operation of mechanical equipment and is suitable for other rotating scenarios.展开更多
In the present paper, we obtain asymptotic expansion of the wavelet transform for large value of dilation parameter a by using López technique. Asymptotic expansion of Shannon wavelet, Morlet wavelet and Mexican ...In the present paper, we obtain asymptotic expansion of the wavelet transform for large value of dilation parameter a by using López technique. Asymptotic expansion of Shannon wavelet, Morlet wavelet and Mexican Hat wavelet transform are obtained as special cases.展开更多
A brain tumor is a mass of abnormal cells in the brain. Brain tumors can be benign (noncancerous) or malignant (cancerous). Conventional diagnosis of a brain tumor by the radiologist is done by examining a set of imag...A brain tumor is a mass of abnormal cells in the brain. Brain tumors can be benign (noncancerous) or malignant (cancerous). Conventional diagnosis of a brain tumor by the radiologist is done by examining a set of images produced by magnetic resonance imaging (MRI). Many computer-aided detection (CAD) systems have been developed in order to help the radiologists reach their goal of correctly classifying the MRI image. Convolutional neural networks (CNNs) have been widely used in the classification of medical images. This paper presents a novel CAD technique for the classification of brain tumors in MRI images. The proposed system extracts features from the brain MRI images by utilizing the strong energy compactness property exhibited by the Discrete Wavelet Transform (DWT). The Wavelet features are then applied to a CNN to classify the input MRI image. Experimental results indicate that the proposed approach outperforms other commonly used methods and gives an overall accuracy of 99.3%.展开更多
EEG signals are widely used in emotion recognition due to their ability to reflect involuntary physiological responses.However,the high dimensionality of EEG signals and their continuous variability in the time-freque...EEG signals are widely used in emotion recognition due to their ability to reflect involuntary physiological responses.However,the high dimensionality of EEG signals and their continuous variability in the time-frequency plane make their analysis challenging.Therefore,advanced deep learning methods are needed to extract meaningful features and improve classification performance.This study proposes a hybrid model that integrates the Swin Transformer and Temporal Convolutional Network(TCN)mechanisms for EEG-based emotion recognition.EEG signals are first converted into scalogram images using Continuous Wavelet Transform(CWT),and classification is performed on these images.Swin Transformer is used to extract spatial features in scalogram images,and the TCN method is used to learn long-term dependencies.In addition,attention mechanisms are integrated to highlight the essential features extracted from both models.The effectiveness of the proposed model has been tested on the SEED dataset,widely used in the field of emotion recognition,and it has consistently achieved high performance across all emotional classes,with accuracy,precision,recall,and F1-score values of 97.53%,97.54%,97.53%,and 97.54%,respectively.Compared to traditional transfer learning models,the proposed approach achieved an accuracy increase of 1.43%over ResNet-101,1.81%over DenseNet-201,and 2.44%over VGG-19.In addition,the proposed model outperformed many recent CNN,RNN,and Transformer-based methods reported in the literature.展开更多
This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two ke...This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two key modules:Constrained Deformable Convolution(CDC),which stabilizes geometric alignment by applying a tanh limiter and learnable scaling factor to the predicted offsets,and the Wavelet Frequency Enhancement Module(WFEM),which decomposes features using Haar wavelets to preserve low-frequency structures while enhancing high-frequency boundaries and textures.Evaluations on the CrackSeg9k benchmark demonstrate CW-HRNet’s superior performance,achieving 82.39%mIoU with only 7.49M parameters and 10.34 GFLOPs,outperforming HrSegNet-B48 by 1.83% in segmentation accuracy with minimal complexity overhead.The model also shows strong cross-dataset generalization,achieving 60.01%mIoU and 66.22%F1 on Asphalt3k without fine-tuning.These results highlight CW-HRNet’s favorable accuracyefficiency trade-off for real-world crack segmentation tasks.展开更多
Accurate and reliable crack segmentation is a challenge and meaningful task.In this article,aiming at the characteristics of cracks on the concrete images,the intensity frequency information of source images which is ...Accurate and reliable crack segmentation is a challenge and meaningful task.In this article,aiming at the characteristics of cracks on the concrete images,the intensity frequency information of source images which is obtained by Discrete Wavelet Transform(DWT)is fed into deep learning-based networks to enhance the ability of network on crack segmentation.To well integrate frequency information into network an effective and novel DWTA module based on the DWT and scSE attention mechanism is proposed.The semantic information of cracks is enhanced and the irrelevant information is suppressed by DWTA module.And the gap between frequency information and convolution information from network is balanced by DWTA module which can well fuse wavelet information into image segmentation network.The Unet-DWTA is proposed to preserved the information of crack boundary and thin crack in intermediate feature maps by adding DWTA module in the encoderdecoder structures.In decoder,diverse level feature maps are fused to capture the information of crack boundary and the abstract semantic information which is beneficial to crack pixel classification.The proposed method is verified on three classic datasets including CrackDataset,CrackForest,and DeepCrack datasets.Compared with the other crack methods,the proposed Unet-DWTA shows better performance based on the evaluation of the subjective analysis and objective metrics about image semantic segmentation.展开更多
Biometrics,which has become integrated with our daily lives,could fall prey to falsification attacks,leading to security concerns.In our paper,we use Transient Evoked Otoacoustic Emissions(TEOAE)that are generated by ...Biometrics,which has become integrated with our daily lives,could fall prey to falsification attacks,leading to security concerns.In our paper,we use Transient Evoked Otoacoustic Emissions(TEOAE)that are generated by the human cochlea in response to an external sound stimulus,as a biometric modality.TEOAE are robust to falsification attacks,as the uniqueness of an individual’s inner ear cannot be impersonated.In this study,we use both the raw 1D TEOAE signals,as well as the 2D time-frequency representation of the signal using Continuous Wavelet Transform(CWT).We use 1D and 2D Convolutional Neural Networks(CNN)for the former and latter,respectively,to derive the feature maps.The corresponding lower-dimensional feature maps are obtained using principal component analysis,which is then used as features to build classifiers using machine learning techniques for the task of person identification.T-SNE plots of these feature maps show that they discriminate well among the subjects.Among the various architectures explored,we achieve a best-performing accuracy of 98.95%and 100%using the feature maps of the 1D-CNN and 2D-CNN,respectively,with the latter performance being an improvement over all the earlier works.This performance makes the TEOAE based person identification systems deployable in real-world situations,along with the added advantage of robustness to falsification attacks.展开更多
Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details o...Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics.展开更多
文摘Recently, convolutional neural networks (CNNs) have been utilized in medical imaging research field and have successfully shown their ability in image classification and detection. In this paper we used a CNN combined with a wavelet transform approach for classifying a dataset of 448 lung CT images into 4 categories, e.g. lung adenocarcinoma, lung squamous cell carcinoma, metastatic lung cancer, and normal. The key difference between the commonly-used CNNs and the presented method is that in this method, we adopt the use of redundant wavelet coefficients at level 1 as inputs to the CNN, instead of using original images. One of the main advantages of the proposed method is that it is not necessary to extract regions of interest from original images. The wavelet coefficients of the entire image are used as inputs to the CNN. We compare the classification performance of the proposed method to that of an existing CNN classifier and a CNN-based support vector machine classifier. The experimental results show that the proposed method outperforms the other two methods and achieve the highest overall accuracy of 91.9%. It demonstrates the potential for use in classification of lung diseases in CT images.
基金supported by the Technology Innovation Program(20023566,‘Development and Demonstration of Industrial IoT and AI-Based Process Facility Intelligence Support System in Small and Medium Manufacturing Sites’)funded by the Ministry of Trade,Industry,&Energy(MOTIE,Republic of Korea).
文摘Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability.
文摘Future 6G communications will open up opportunities for innovative applications,including Cyber-Physical Systems,edge computing,supporting Industry 5.0,and digital agriculture.While automation is creating efficiencies,it can also create new cyber threats,such as vulnerabilities in trust and malicious node injection.Denialof-Service(DoS)attacks can stop many forms of operations by overwhelming networks and systems with data noise.Current anomaly detection methods require extensive software changes and only detect static threats.Data collection is important for being accurate,but it is often a slow,tedious,and sometimes inefficient process.This paper proposes a new wavelet transformassisted Bayesian deep learning based probabilistic(WT-BDLP)approach tomitigate malicious data injection attacks in 6G edge networks.The proposed approach combines outlier detection based on a Bayesian learning conditional variational autoencoder(Bay-LCVariAE)and traffic pattern analysis based on continuous wavelet transform(CWT).The Bay-LCVariAE framework allows for probabilistic modelling of generative features to facilitate capturing how features of interest change over time,spatially,and for recognition of anomalies.Similarly,CWT allows emphasizing the multi-resolution spectral analysis and permits temporally relevant frequency pattern recognition.Experimental testing showed that the flexibility of the Bayesian probabilistic framework offers a vast improvement in anomaly detection accuracy over existing methods,with a maximum accuracy of 98.21%recognizing anomalies.
基金Supported by the National Natural Science Foundation of China under Grant 42274144 and under Grant 41974137.
文摘Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models.
文摘Computerized tomography (CT) scan is the only screening test recommended by doctors to look for lung cancer. Convolutional neural networks (CNNs) have recently proven their ability to successfully classify medical images. Due to its strong compactness property, the Discrete Wavelet transform (DWT) has been commonly used in image feature extraction applications. This paper presents a novel technique for the classification of Lung cancer in Computerized Tomography (CT) scans using Wavelets to find discriminative features in the CT images and CNN to classify the extracted features. Experimental results prove that the proposed approach outperforms other commonly used methods and gives an overall accuracy of 99.5%.
基金Supported by National Key Research and Development Project of China(Grant No.2020YFB2007700)State Key Laboratory of Tribology Initiative Research Program(Grant No.SKLT2020D21)+2 种基金National Natural Science Foundation of China(Grant No.51975309)Shaanxi Provincial Natural Science Foundation of China(Grant No.2019JQ-712)Young Talent Fund of University Association for Science and Technology in Shaanxi(Grant No.20170511).
文摘The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation approaches have been proposed recently.However,the following problems remain in existing methods:1)Most network models use raw data or statistical features as input,which renders it difficult to extract complex fault-related information hidden in signals;2)for current observations,the dependence between current states is emphasized,but their complex dependence on previous states is often disregarded;3)the output of neural networks is directly used as the estimated RUL in most studies,resulting in extremely volatile prediction results that lack robustness.Hence,a novel prognostics approach is proposed based on a time-frequency representation(TFR)subsequence,three-dimensional convolutional neural network(3DCNN),and Gaussian process regression(GPR).The approach primarily comprises two aspects:construction of a health indicator(HI)using the TFR-subsequence-3DCNN model,and RUL estimation based on the GPR model.The raw signals of the bearings are converted into TFR-subsequences by continuous wavelet transform and a dislocated overlapping strategy.Subsequently,the 3DCNN is applied to extract the hidden spatiotemporal features from the TFR-subsequences and construct HIs.Finally,the RUL of the bearings is estimated using the GPR model,which can also define the probability distribution of the potential function and prediction confidence.Experiments on the PRONOSTIA platform demonstrate the superiority of the proposed TFR-subsequence-3DCNN-GPR approach.The use of degradation-related spatiotemporal features in signals is proposed herein to achieve a highly accurate bearing RUL prediction with uncertainty quantification.
基金Science and Technology Planning Project of Inner Mongolia of China under contract number 2021GG0346.
文摘Fault diagnosis technology has been widely applied and is an important part of ensuring the safe operation of mechanical equipment.In response to the problem of frequent faults in rolling bearings,this paper designs a rolling bearing fault diagnosis method based on convolutional capsule network(CCN).More specifically,the original vibration signal is converted into a two-dimensional time–frequency image using continuous wavelet transform(CWT),and the feature extraction is performed on the two-dimensional time–frequency image using the convolution layer at the front end of the network,and the extracted features are input into the capsule network.The capsule network converts the extracted features into vector neurons,and the dynamic routing algorithm is used to achieve feature transfer and output the results of fault diagnosis.Two different datasets are used to compare with other traditional deep learning models to verify the fault diagnosis capability of the method.The results show that the CCN has good diagnostic capability under different working conditions,even in the presence of noise and insufficient samples,compared to other models.This method contributes to the safe and reliable operation of mechanical equipment and is suitable for other rotating scenarios.
文摘In the present paper, we obtain asymptotic expansion of the wavelet transform for large value of dilation parameter a by using López technique. Asymptotic expansion of Shannon wavelet, Morlet wavelet and Mexican Hat wavelet transform are obtained as special cases.
文摘A brain tumor is a mass of abnormal cells in the brain. Brain tumors can be benign (noncancerous) or malignant (cancerous). Conventional diagnosis of a brain tumor by the radiologist is done by examining a set of images produced by magnetic resonance imaging (MRI). Many computer-aided detection (CAD) systems have been developed in order to help the radiologists reach their goal of correctly classifying the MRI image. Convolutional neural networks (CNNs) have been widely used in the classification of medical images. This paper presents a novel CAD technique for the classification of brain tumors in MRI images. The proposed system extracts features from the brain MRI images by utilizing the strong energy compactness property exhibited by the Discrete Wavelet Transform (DWT). The Wavelet features are then applied to a CNN to classify the input MRI image. Experimental results indicate that the proposed approach outperforms other commonly used methods and gives an overall accuracy of 99.3%.
文摘EEG signals are widely used in emotion recognition due to their ability to reflect involuntary physiological responses.However,the high dimensionality of EEG signals and their continuous variability in the time-frequency plane make their analysis challenging.Therefore,advanced deep learning methods are needed to extract meaningful features and improve classification performance.This study proposes a hybrid model that integrates the Swin Transformer and Temporal Convolutional Network(TCN)mechanisms for EEG-based emotion recognition.EEG signals are first converted into scalogram images using Continuous Wavelet Transform(CWT),and classification is performed on these images.Swin Transformer is used to extract spatial features in scalogram images,and the TCN method is used to learn long-term dependencies.In addition,attention mechanisms are integrated to highlight the essential features extracted from both models.The effectiveness of the proposed model has been tested on the SEED dataset,widely used in the field of emotion recognition,and it has consistently achieved high performance across all emotional classes,with accuracy,precision,recall,and F1-score values of 97.53%,97.54%,97.53%,and 97.54%,respectively.Compared to traditional transfer learning models,the proposed approach achieved an accuracy increase of 1.43%over ResNet-101,1.81%over DenseNet-201,and 2.44%over VGG-19.In addition,the proposed model outperformed many recent CNN,RNN,and Transformer-based methods reported in the literature.
文摘This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two key modules:Constrained Deformable Convolution(CDC),which stabilizes geometric alignment by applying a tanh limiter and learnable scaling factor to the predicted offsets,and the Wavelet Frequency Enhancement Module(WFEM),which decomposes features using Haar wavelets to preserve low-frequency structures while enhancing high-frequency boundaries and textures.Evaluations on the CrackSeg9k benchmark demonstrate CW-HRNet’s superior performance,achieving 82.39%mIoU with only 7.49M parameters and 10.34 GFLOPs,outperforming HrSegNet-B48 by 1.83% in segmentation accuracy with minimal complexity overhead.The model also shows strong cross-dataset generalization,achieving 60.01%mIoU and 66.22%F1 on Asphalt3k without fine-tuning.These results highlight CW-HRNet’s favorable accuracyefficiency trade-off for real-world crack segmentation tasks.
基金National Natural Science Foundation of China under Grant 61972267National Natural Science Foundation of Hebei Province under Grant F2018210148University Science Research Project of Hebei Province under Grant ZD2021334。
文摘Accurate and reliable crack segmentation is a challenge and meaningful task.In this article,aiming at the characteristics of cracks on the concrete images,the intensity frequency information of source images which is obtained by Discrete Wavelet Transform(DWT)is fed into deep learning-based networks to enhance the ability of network on crack segmentation.To well integrate frequency information into network an effective and novel DWTA module based on the DWT and scSE attention mechanism is proposed.The semantic information of cracks is enhanced and the irrelevant information is suppressed by DWTA module.And the gap between frequency information and convolution information from network is balanced by DWTA module which can well fuse wavelet information into image segmentation network.The Unet-DWTA is proposed to preserved the information of crack boundary and thin crack in intermediate feature maps by adding DWTA module in the encoderdecoder structures.In decoder,diverse level feature maps are fused to capture the information of crack boundary and the abstract semantic information which is beneficial to crack pixel classification.The proposed method is verified on three classic datasets including CrackDataset,CrackForest,and DeepCrack datasets.Compared with the other crack methods,the proposed Unet-DWTA shows better performance based on the evaluation of the subjective analysis and objective metrics about image semantic segmentation.
基金The authors would like to thank the Biometrics Security Laboratory of the University of Toronto for providing the Transient Evoked Otoacoustic Emissions(TEOAE)dataset.
文摘Biometrics,which has become integrated with our daily lives,could fall prey to falsification attacks,leading to security concerns.In our paper,we use Transient Evoked Otoacoustic Emissions(TEOAE)that are generated by the human cochlea in response to an external sound stimulus,as a biometric modality.TEOAE are robust to falsification attacks,as the uniqueness of an individual’s inner ear cannot be impersonated.In this study,we use both the raw 1D TEOAE signals,as well as the 2D time-frequency representation of the signal using Continuous Wavelet Transform(CWT).We use 1D and 2D Convolutional Neural Networks(CNN)for the former and latter,respectively,to derive the feature maps.The corresponding lower-dimensional feature maps are obtained using principal component analysis,which is then used as features to build classifiers using machine learning techniques for the task of person identification.T-SNE plots of these feature maps show that they discriminate well among the subjects.Among the various architectures explored,we achieve a best-performing accuracy of 98.95%and 100%using the feature maps of the 1D-CNN and 2D-CNN,respectively,with the latter performance being an improvement over all the earlier works.This performance makes the TEOAE based person identification systems deployable in real-world situations,along with the added advantage of robustness to falsification attacks.
基金Supported by the National Natural Science Foundation of China(No.61901183)Fundamental Research Funds for the Central Universities(No.ZQN921)+4 种基金Natural Science Foundation of Fujian Province Science and Technology Department(No.2021H6037)Key Project of Quanzhou Science and Technology Plan(No.2021C008R)Natural Science Foundation of Fujian Province(No.2019J01010561)Education and Scientific Research Project for Young and Middle-aged Teachers of Fujian Province 2019(No.JAT191080)Science and Technology Bureau of Quanzhou(No.2017G046)。
文摘Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics.