Ni-50at.%A1 matrix composites containing 0 to 20v.% TiB2 particles have been successfully fabricated by HPES technique. The results show that the Vickers hardness at room temperature and the compressive yield strength...Ni-50at.%A1 matrix composites containing 0 to 20v.% TiB2 particles have been successfully fabricated by HPES technique. The results show that the Vickers hardness at room temperature and the compressive yield strength from room temperature to 1000℃ of the composites increase with increasing volume fraction of the strengthening phase. Especially, the yield strength of NiAl-20TiB2 was approximately twice as high as that of unreinforced NiAl. The ductility of the composites at room temperature is also superior to the monolithic NiAl.展开更多
The microstructure and mechanical behaviors of NiAl-28Cr-5Mo-1Nb eutectic alloy were investigated by using scanning electron microscopy, X-ray diffraction, transmission electron microscopy and compression tests, respe...The microstructure and mechanical behaviors of NiAl-28Cr-5Mo-1Nb eutectic alloy were investigated by using scanning electron microscopy, X-ray diffraction, transmission electron microscopy and compression tests, respectively. The alloy is mainly composed of three phases, which are the gray lamellar Cr(Mo) plate, black NiAI matrix and semicontinuously distributed Cr2Nb-type Laves phase. Through Nb addition, NiAl-Cr(Mo)/Nb alloy exhibits a reasonable balance of high temperature strength and room temperature compression ductility and its mechanical behaviors are superior to the NiAl-28Cr-6Mo eutectic alloy at all temperature. The elevated temperature compression deformation behavior of NiAl-Cr(Mo)/Nb alloy can be properly described by power-law equation.the National High Technology Committee of China (No. 863-715-005-0030) for financial supports.展开更多
文摘Ni-50at.%A1 matrix composites containing 0 to 20v.% TiB2 particles have been successfully fabricated by HPES technique. The results show that the Vickers hardness at room temperature and the compressive yield strength from room temperature to 1000℃ of the composites increase with increasing volume fraction of the strengthening phase. Especially, the yield strength of NiAl-20TiB2 was approximately twice as high as that of unreinforced NiAl. The ductility of the composites at room temperature is also superior to the monolithic NiAl.
基金The authors would like to acknowledge the National Natural Science Foundation of China(No.59895152)the National High Technology Committee of China(No.863-715-005-0030)for financial supports.
文摘The microstructure and mechanical behaviors of NiAl-28Cr-5Mo-1Nb eutectic alloy were investigated by using scanning electron microscopy, X-ray diffraction, transmission electron microscopy and compression tests, respectively. The alloy is mainly composed of three phases, which are the gray lamellar Cr(Mo) plate, black NiAI matrix and semicontinuously distributed Cr2Nb-type Laves phase. Through Nb addition, NiAl-Cr(Mo)/Nb alloy exhibits a reasonable balance of high temperature strength and room temperature compression ductility and its mechanical behaviors are superior to the NiAl-28Cr-6Mo eutectic alloy at all temperature. The elevated temperature compression deformation behavior of NiAl-Cr(Mo)/Nb alloy can be properly described by power-law equation.the National High Technology Committee of China (No. 863-715-005-0030) for financial supports.