用溶胶-凝胶法合成锂离子电池用富锂正极材料Li[Li0.2Ni0.15Mn0.55Co0.1]O2,通过XRD、SEM、电感耦合等离子体发射光谱(ICP-OES)和电化学性能测试考察煅烧温度对合成材料结构和性能的影响。900℃下制备的材料具有典型的α-Na Fe O2层...用溶胶-凝胶法合成锂离子电池用富锂正极材料Li[Li0.2Ni0.15Mn0.55Co0.1]O2,通过XRD、SEM、电感耦合等离子体发射光谱(ICP-OES)和电化学性能测试考察煅烧温度对合成材料结构和性能的影响。900℃下制备的材料具有典型的α-Na Fe O2层状结构、较好的晶型结构及良好的电化学性能。在2.04.8 V充放电,20℃下的0.10 C首次放电比容量为235.4 m Ah/g,库仑效率为78.5%;依次以0.10 C、0.20 C、0.50 C、0.75 C和1.00 C循环10次,再以0.20 C放电,首次1.00 C放电比容量为149.7 m Ah/g,最后一次0.20 C放电比容量为首次0.10 C放电比容量的85.9%。展开更多
Since lithium-ion battery with high energy density is the key component for next-generation electrical vehicles, a full understanding of its thermal behaviors at different discharge rates is quite important for the de...Since lithium-ion battery with high energy density is the key component for next-generation electrical vehicles, a full understanding of its thermal behaviors at different discharge rates is quite important for the design and thermal management of lithium-ion batteries (LIBs) pack/module. In this work, a 25 Ah pouch type Li[Ni0.7 Co0.15Mn0.15]O2/graphite LIBs with specific energy of 200 Wh.kg-1 were designed to investigate their thermal behaviors, including temperature distribution, heat generation rate, heat capacity and heat transfer coefficient with environment. Results show that the temperature increment of the charged pouch batteries strongly depends on the discharge rate and depth of discharge. The heat generation rate is mainly influenced by the irreversible heat effect, while the reversible heat is important at all discharge rates and contributes much to the middle evolution of the tem- perature during discharge, especially at low rate. Subse- quently, a prediction model with lumped parameters was used to estimate the temperature evolution at different discharge rates of LIBs. The predicted results match well with the experimental results at all discharge rates. Therefore, the thermal model is suitable to predict the average temperature for the large-scale batteries under normal operating conditions.展开更多
基金financially supported by the Program from Ministry of Science and Technology of China(No.2011AA11A254)the National High Technology Research and Development Program of China(No.2012AA110102)
文摘Since lithium-ion battery with high energy density is the key component for next-generation electrical vehicles, a full understanding of its thermal behaviors at different discharge rates is quite important for the design and thermal management of lithium-ion batteries (LIBs) pack/module. In this work, a 25 Ah pouch type Li[Ni0.7 Co0.15Mn0.15]O2/graphite LIBs with specific energy of 200 Wh.kg-1 were designed to investigate their thermal behaviors, including temperature distribution, heat generation rate, heat capacity and heat transfer coefficient with environment. Results show that the temperature increment of the charged pouch batteries strongly depends on the discharge rate and depth of discharge. The heat generation rate is mainly influenced by the irreversible heat effect, while the reversible heat is important at all discharge rates and contributes much to the middle evolution of the tem- perature during discharge, especially at low rate. Subse- quently, a prediction model with lumped parameters was used to estimate the temperature evolution at different discharge rates of LIBs. The predicted results match well with the experimental results at all discharge rates. Therefore, the thermal model is suitable to predict the average temperature for the large-scale batteries under normal operating conditions.