One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT...One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT) nanofibers with average diameters about 65 nm are prepared by electrospinning from poly(vinyl pyrrolidone) (PVP) and metal salts.The precursor composite NZFO/PZT/PVP nanofibers and the subsequent calcined NZFO/PZT nanofibers are investigated by Fourier transform infrared spectroscopy (FT- IR) ,X-ray diffraction (XRD),scanning electron microscopy (SEM).The magnetic properties for nanofibers are measured by vibrating sample magnetometer(VSM).The NZFO/PZT nanofibers obtained at calcination temperature of 900 °C for 2 h consist of the ferromagnetic spinel NZFO and ferroelectric perovskite PZT phases,which are constructed from about 37 nm NZFO and 17 nm PZT grains.The saturation magnetization of these NZFO/PZT nanofibers increases with increasing calcination temperature and contents of NZFO in the composite.展开更多
Silver (I) was removed from aqueous environment by aloe vera shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles.The adsorbent was characterized by several methods including X-ray diffraction (XRD), scanning el...Silver (I) was removed from aqueous environment by aloe vera shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles.The adsorbent was characterized by several methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), BETisotherm, vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FT-IR). To determine the absorptionof silver (I) by this adsorbent, different pH values (2?7), adsorbent dose (0.01?0.5 g), concentrations of Ag+ (50, 100, 200, 300, 500,700 and 1000 mg/L) and exposure time (5?100 min) were experimented. The highest removal efficiency of Ag+ was achieved underoptimum condition (30 min and pH=5). The optimum adsorbent dose was 0.20 g (in 50 mL of 100 mg/L Ag+ solution), whichachieved a removal efficiency of 98.3%. The maximum monolayer adsorption capacity based on the Langmuir isotherm is243.90 mg/g. Characterization results revealed that specific surface area and porous volume were 814.23 m2/g and 0.726 cm3/g,respectively. The experimental data were fitted well with the Langmuir and Freundlich isotherm models. Synthesized adsorbent has desired surface area and adsorptive capacity for silver (I) adsorption in aquatic environment.展开更多
基金Funded by the National Natural Science Foundation of China (No. 50674048)Research Fund for the Doctoral Program of Higher Education of China(No.20103227110006)
文摘One-dimensional and quasi-one-dimensional nanostructure materials are promising building blocks for electromagnetic devices and nanosystems.In this work,the composite Ni0.5Zn0.5Fe2O4(NZFO)/ Pb(Zr0.52Ti0.48)O3(PZT) nanofibers with average diameters about 65 nm are prepared by electrospinning from poly(vinyl pyrrolidone) (PVP) and metal salts.The precursor composite NZFO/PZT/PVP nanofibers and the subsequent calcined NZFO/PZT nanofibers are investigated by Fourier transform infrared spectroscopy (FT- IR) ,X-ray diffraction (XRD),scanning electron microscopy (SEM).The magnetic properties for nanofibers are measured by vibrating sample magnetometer(VSM).The NZFO/PZT nanofibers obtained at calcination temperature of 900 °C for 2 h consist of the ferromagnetic spinel NZFO and ferroelectric perovskite PZT phases,which are constructed from about 37 nm NZFO and 17 nm PZT grains.The saturation magnetization of these NZFO/PZT nanofibers increases with increasing calcination temperature and contents of NZFO in the composite.
基金the Islamic Azad University-Bandar Abbas Branch for financial support
文摘Silver (I) was removed from aqueous environment by aloe vera shell ash supported Ni0.5Zn0.5Fe2O4 magnetic nanoparticles.The adsorbent was characterized by several methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), BETisotherm, vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FT-IR). To determine the absorptionof silver (I) by this adsorbent, different pH values (2?7), adsorbent dose (0.01?0.5 g), concentrations of Ag+ (50, 100, 200, 300, 500,700 and 1000 mg/L) and exposure time (5?100 min) were experimented. The highest removal efficiency of Ag+ was achieved underoptimum condition (30 min and pH=5). The optimum adsorbent dose was 0.20 g (in 50 mL of 100 mg/L Ag+ solution), whichachieved a removal efficiency of 98.3%. The maximum monolayer adsorption capacity based on the Langmuir isotherm is243.90 mg/g. Characterization results revealed that specific surface area and porous volume were 814.23 m2/g and 0.726 cm3/g,respectively. The experimental data were fitted well with the Langmuir and Freundlich isotherm models. Synthesized adsorbent has desired surface area and adsorptive capacity for silver (I) adsorption in aquatic environment.