In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including...In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including feedstock gases space velocity,coke content,bed temperature and sulfur-tolerant stability of 100 h life were investigated.The structure of the catalysts was characterized by XRD,N2adsorptiondesorption and TEM.It is found that under same space velocity from 5000 h 1to 25000 h 1FBR gave a higher CH4yield,lower coke content,and lower bed temperature than those obtained in FIXBR.Ni-W/TiO2-SiO2catalyst possessed excellent sulfur-tolerant stability on the feedstock gases less than 500 ppm H2S in FBR.The carbon deposits formed on the spent catalyst were in the form of carbon fibers in FBR,while in the form of dense accumulation distribution appearance in FIXBR.展开更多
A series of catalysts were prepared by doping different loadings of CeO2 over TiO2-SiO2-WO3 and used for the selective catalytic reduction of NOx by NH3. The experimental results showed that the selective catalytic re...A series of catalysts were prepared by doping different loadings of CeO2 over TiO2-SiO2-WO3 and used for the selective catalytic reduction of NOx by NH3. The experimental results showed that the selective catalytic reduction(SCR) performance and SO2-resistant ability of TiO2-SiO2-WO3 were greatly enhanced by the introduction of cerium. The catalyst containing 10% CeO2 showed the highest NO conversion in a wide temperature range and good N2 selectivity with broad operation temperature window at the gas hourly space velocity(GHSV) of 30000 h–1, which was a very promising catalyst for NOx abatement from diesel engine exhaust. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDS), N2 adsorption-desorption(BET) and X-ray photoelectron spectroscopy(XPS). The characterization results showed that the bigger pore radius, higher surface atomic concentration and dispersion of Ce and the abundant adsorbed oxygen on the surface of catalyst contributed to the best NH3-SCR performance of CeO2/TiO2-SiO2-WO3 catalyst containing 10% CeO2.展开更多
The influence of calcination temperature on the structure and catalytic behavior of Ni/TiO2-SiO2 catalyst, for CO2 reforming of methane to synthesis gas under atmospheric pressure, was investigated. The results showed...The influence of calcination temperature on the structure and catalytic behavior of Ni/TiO2-SiO2 catalyst, for CO2 reforming of methane to synthesis gas under atmospheric pressure, was investigated. The results showed that the Ni/TiO2-SiO2 catalyst calcined at 700 ℃ had high and stable activity while the catalysts calcined at 550 and 850 ℃ had low and unstable activity. Depending on the calcination temperature, one, two, or three of the following Ni-containing species, NiO, Ni2.44Ti0.72Si0.07O4, and NiTiO3 were identified by combining the temperature programmed reduction (TPR) and X-ray diffraction (XRD) results. Their reducibility decreased in the sequence: NiO〉Ni2.44Ti0.72Si0.07O4〉NiTiO3. It suggests that high and stable activities observed over the Ni/TiO2-SiO2 catalyst calcined at 700 ~C were induced by the formation of Ni2.44Ti0.72Si0.07O4 and smaller NiO species crystallite size.展开更多
Effects of doping CeO2 and Er2O3 on the mechanical strength, thermal expansion coefficient, sintering temperature of TiO2-SiO2 ceramics were investigated. The experimental results and the microscopic analysis of SEM, ...Effects of doping CeO2 and Er2O3 on the mechanical strength, thermal expansion coefficient, sintering temperature of TiO2-SiO2 ceramics were investigated. The experimental results and the microscopic analysis of SEM, XRD, TG-DSC, FT-IR and TEM show that adding CeO2 and Er2O3 into TiO2-SiO2 ceramics can prohibit the growth of its crystal grains, make their size uniform and form them into a dense structure, which finally enhance its mechanical behaviors, and the lower thermal expansion coefficient that leads to an excellent property of thermal shock resistance. After the reforming TiO2-SiO2 ceramics doped by CeO2 was sintered at 1380℃, the bending strength reached to 83 MPa, and the thermal expansion coefficient was 9.8×10-6/℃within the temperature range of 25 ~ 800℃, which provides a promising basis of making equipped honeycomb catalyst of deNOx.展开更多
A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO ...A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h^(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h^(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn^(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn^(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.展开更多
Ni/Al_2O_3-SiO_2 catalysts were synthesized via one-step method employing SiO_2 as an additive for the selective hydrogenation of butyne-1,4-diol(B_3D) to butane-1,4-diol(B1D). The prepared catalysts were evaluated by...Ni/Al_2O_3-SiO_2 catalysts were synthesized via one-step method employing SiO_2 as an additive for the selective hydrogenation of butyne-1,4-diol(B_3D) to butane-1,4-diol(B1D). The prepared catalysts were evaluated by a series of characterization techniques including BET, XRD, SEM, EDX-mapping, TEM, H_2-TPR, XPS, NH_3-TPD and Py-FTIR. Compared to Ni/Al_2O_3 catalyst, the SiO_2-doped samples exhibited better B_3D conversion. SiO_2 could help to form a strong interaction between NiO with the support, which inhibited Ni agglomeration at high temperature, improved the Ni dispersion, and enhanced the hydrogenation activity. B_1D selectivity was mainly influenced by the quantity of Lewis acid sites in addition to the Ni dispersion. The catalyst with a silica loading of 6.4% demonstrated an excellent selectivity of 75.18%(by 13% higher than the contrastive Ni/Al_2O_3 catalyst), which was attributed to the larger amount of Lewis acid sites and the moderate interaction between NiO with the support, which could facilitate the nickel dispersion on a preferable surface area of 176.3 m^2/g of support.展开更多
A series of SO 2- 4/TiO 2 SiO 2 catalysts with different mass fractions of SiO 2 were prepared by sol gel method. The effect of adding SiO 2 on the crystal structure, specific surface area, oxygen adsorption, and acid...A series of SO 2- 4/TiO 2 SiO 2 catalysts with different mass fractions of SiO 2 were prepared by sol gel method. The effect of adding SiO 2 on the crystal structure, specific surface area, oxygen adsorption, and acidity of SO 2- 4/TiO 2 catalyst and its photocatalytic property for degradation of bromomethane was studied. The results showed that the specific surface area and amount of oxygen adsorption of catalyst were increased by addition of SiO 2, leading to the obvious increase on photocatalytic activity of SO 2- 4/TiO 2 SiO 2 catalysts and mineralization ratio of bromomethane. Comparing with SO 2- 4/TiO 2, the acidic strength and anti moisture ability of SO 2- 4/TiO 2 SiO 2 catalyst were decreased.展开更多
文摘In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including feedstock gases space velocity,coke content,bed temperature and sulfur-tolerant stability of 100 h life were investigated.The structure of the catalysts was characterized by XRD,N2adsorptiondesorption and TEM.It is found that under same space velocity from 5000 h 1to 25000 h 1FBR gave a higher CH4yield,lower coke content,and lower bed temperature than those obtained in FIXBR.Ni-W/TiO2-SiO2catalyst possessed excellent sulfur-tolerant stability on the feedstock gases less than 500 ppm H2S in FBR.The carbon deposits formed on the spent catalyst were in the form of carbon fibers in FBR,while in the form of dense accumulation distribution appearance in FIXBR.
基金supported by the National Natural Science Foundation of China(21173153)the National High Technology Research and Development Program of China(863 project)(2013AA065304)
文摘A series of catalysts were prepared by doping different loadings of CeO2 over TiO2-SiO2-WO3 and used for the selective catalytic reduction of NOx by NH3. The experimental results showed that the selective catalytic reduction(SCR) performance and SO2-resistant ability of TiO2-SiO2-WO3 were greatly enhanced by the introduction of cerium. The catalyst containing 10% CeO2 showed the highest NO conversion in a wide temperature range and good N2 selectivity with broad operation temperature window at the gas hourly space velocity(GHSV) of 30000 h–1, which was a very promising catalyst for NOx abatement from diesel engine exhaust. The catalysts were characterized by X-ray diffraction(XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDS), N2 adsorption-desorption(BET) and X-ray photoelectron spectroscopy(XPS). The characterization results showed that the bigger pore radius, higher surface atomic concentration and dispersion of Ce and the abundant adsorbed oxygen on the surface of catalyst contributed to the best NH3-SCR performance of CeO2/TiO2-SiO2-WO3 catalyst containing 10% CeO2.
文摘The influence of calcination temperature on the structure and catalytic behavior of Ni/TiO2-SiO2 catalyst, for CO2 reforming of methane to synthesis gas under atmospheric pressure, was investigated. The results showed that the Ni/TiO2-SiO2 catalyst calcined at 700 ℃ had high and stable activity while the catalysts calcined at 550 and 850 ℃ had low and unstable activity. Depending on the calcination temperature, one, two, or three of the following Ni-containing species, NiO, Ni2.44Ti0.72Si0.07O4, and NiTiO3 were identified by combining the temperature programmed reduction (TPR) and X-ray diffraction (XRD) results. Their reducibility decreased in the sequence: NiO〉Ni2.44Ti0.72Si0.07O4〉NiTiO3. It suggests that high and stable activities observed over the Ni/TiO2-SiO2 catalyst calcined at 700 ~C were induced by the formation of Ni2.44Ti0.72Si0.07O4 and smaller NiO species crystallite size.
基金Project supported by the National Natural Science Foundation of China (20376034) Social Development Fund of Jiangsu Province (BS2005053)
文摘Effects of doping CeO2 and Er2O3 on the mechanical strength, thermal expansion coefficient, sintering temperature of TiO2-SiO2 ceramics were investigated. The experimental results and the microscopic analysis of SEM, XRD, TG-DSC, FT-IR and TEM show that adding CeO2 and Er2O3 into TiO2-SiO2 ceramics can prohibit the growth of its crystal grains, make their size uniform and form them into a dense structure, which finally enhance its mechanical behaviors, and the lower thermal expansion coefficient that leads to an excellent property of thermal shock resistance. After the reforming TiO2-SiO2 ceramics doped by CeO2 was sintered at 1380℃, the bending strength reached to 83 MPa, and the thermal expansion coefficient was 9.8×10-6/℃within the temperature range of 25 ~ 800℃, which provides a promising basis of making equipped honeycomb catalyst of deNOx.
基金Project supported by the National Key Research and Development Program of China(2016YFC0205500)National Natural Science Foundation of China(51772149)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h^(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h^(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn^(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn^(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.
基金Financial support from the National Natural Science Foundation of China (21163019) is gratefully acknowledged
文摘Ni/Al_2O_3-SiO_2 catalysts were synthesized via one-step method employing SiO_2 as an additive for the selective hydrogenation of butyne-1,4-diol(B_3D) to butane-1,4-diol(B1D). The prepared catalysts were evaluated by a series of characterization techniques including BET, XRD, SEM, EDX-mapping, TEM, H_2-TPR, XPS, NH_3-TPD and Py-FTIR. Compared to Ni/Al_2O_3 catalyst, the SiO_2-doped samples exhibited better B_3D conversion. SiO_2 could help to form a strong interaction between NiO with the support, which inhibited Ni agglomeration at high temperature, improved the Ni dispersion, and enhanced the hydrogenation activity. B_1D selectivity was mainly influenced by the quantity of Lewis acid sites in addition to the Ni dispersion. The catalyst with a silica loading of 6.4% demonstrated an excellent selectivity of 75.18%(by 13% higher than the contrastive Ni/Al_2O_3 catalyst), which was attributed to the larger amount of Lewis acid sites and the moderate interaction between NiO with the support, which could facilitate the nickel dispersion on a preferable surface area of 176.3 m^2/g of support.
文摘A series of SO 2- 4/TiO 2 SiO 2 catalysts with different mass fractions of SiO 2 were prepared by sol gel method. The effect of adding SiO 2 on the crystal structure, specific surface area, oxygen adsorption, and acidity of SO 2- 4/TiO 2 catalyst and its photocatalytic property for degradation of bromomethane was studied. The results showed that the specific surface area and amount of oxygen adsorption of catalyst were increased by addition of SiO 2, leading to the obvious increase on photocatalytic activity of SO 2- 4/TiO 2 SiO 2 catalysts and mineralization ratio of bromomethane. Comparing with SO 2- 4/TiO 2, the acidic strength and anti moisture ability of SO 2- 4/TiO 2 SiO 2 catalyst were decreased.