Amorphous Ni-Ru-B/ZrO2 catalyst was prepared by the means of chemical reduction, and selective CO methanation as a strategy for CO removal in fuel processing applications was investigated over the amorphous Ni-Ru-B/Zr...Amorphous Ni-Ru-B/ZrO2 catalyst was prepared by the means of chemical reduction, and selective CO methanation as a strategy for CO removal in fuel processing applications was investigated over the amorphous Ni-Ru-B/ZrO2 catalyst. The result showed that, at the temperature of 210-230 ℃, the catalyst was shown to be capable of reducing CO in a hydrogen-rich reformate to less than 10 ppm, while keeping the CO2 conversion below 1.55% and the hydrogen consumption below 6.50%. ?2009 Xin Fa Dong. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Amorphous Ni-Ru-B/ZrO2 catalysts were prepared by chemical reduction method. The effects of Ni-Ru-B loading and Ru/Ni mole ratio on the catalytic performance for selective CO methanation from reformed fuel were studie...Amorphous Ni-Ru-B/ZrO2 catalysts were prepared by chemical reduction method. The effects of Ni-Ru-B loading and Ru/Ni mole ratio on the catalytic performance for selective CO methanation from reformed fuel were studied, and the catalysts were characterized by BET, ICP, XRD and TPD. The results showed that Ru strongly affected the catalytic activity and selectivity by increasing the thermal stability of amorphous structure, promoting the dispersion of the catalyst particle, and intensifying the CO adsorption. For the catalysts with Ru/Ni mole ratio under 0.15, the CO methanation conversion and selectivity increased significantly with the increasing Ru/Ni mole ratio. Among all the catalysts investigated, the 30 wt% Ni-Ru-B loading amorphous Ni61Ru9B30/ZrO2 catalyst with 0.15 Ru/Ni mole ratio presented the best catalytic performance, over which higher than 99.9% of CO conversion was obtained in the temperature range of 230℃-250℃, and the CO2 conversion was kept under the level of 0.9%.展开更多
A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures an...A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.展开更多
以纳米ZrO 、微米Al O 为原料,采用无压烧结方式制备了ZTA 复相陶瓷。结果表明:nano-ZrO 的 2 2 3 2加入有利于制备细晶ZTA 复相陶瓷。此外,nano-ZrO 的加入对 Al O 陶瓷的显微结构也产生影响,ZrO ...以纳米ZrO 、微米Al O 为原料,采用无压烧结方式制备了ZTA 复相陶瓷。结果表明:nano-ZrO 的 2 2 3 2加入有利于制备细晶ZTA 复相陶瓷。此外,nano-ZrO 的加入对 Al O 陶瓷的显微结构也产生影响,ZrO 颗粒以 2 2 3 2“晶内型”和晶界型两种形式存在。合理的配方组成及制备工艺有利于 Z r O 以四方亚稳相存在。Z r O 含量为 2 23 0 w t % 时,其四方相含量可达 6 9 %,有利于应力诱导相变增韧,该 Z T A 复相陶瓷的抗弯强度、断裂韧性分别达到 604MPa、6.87MPa·m1/2。展开更多
基金supported by the National Natural Science Foundation of China(No.20576023)the Guangdong Province Natural Science Foundation(No.06025660).
文摘Amorphous Ni-Ru-B/ZrO2 catalyst was prepared by the means of chemical reduction, and selective CO methanation as a strategy for CO removal in fuel processing applications was investigated over the amorphous Ni-Ru-B/ZrO2 catalyst. The result showed that, at the temperature of 210-230 ℃, the catalyst was shown to be capable of reducing CO in a hydrogen-rich reformate to less than 10 ppm, while keeping the CO2 conversion below 1.55% and the hydrogen consumption below 6.50%. ?2009 Xin Fa Dong. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金supported by the National Natural Science Foundation of China (No: 20576023)the Guangdong Province Natural Science Foundation(No: 06025660)the Natural Science Foundation of Zhongkai University of Agriculture and Engineering (G3100026)
文摘Amorphous Ni-Ru-B/ZrO2 catalysts were prepared by chemical reduction method. The effects of Ni-Ru-B loading and Ru/Ni mole ratio on the catalytic performance for selective CO methanation from reformed fuel were studied, and the catalysts were characterized by BET, ICP, XRD and TPD. The results showed that Ru strongly affected the catalytic activity and selectivity by increasing the thermal stability of amorphous structure, promoting the dispersion of the catalyst particle, and intensifying the CO adsorption. For the catalysts with Ru/Ni mole ratio under 0.15, the CO methanation conversion and selectivity increased significantly with the increasing Ru/Ni mole ratio. Among all the catalysts investigated, the 30 wt% Ni-Ru-B loading amorphous Ni61Ru9B30/ZrO2 catalyst with 0.15 Ru/Ni mole ratio presented the best catalytic performance, over which higher than 99.9% of CO conversion was obtained in the temperature range of 230℃-250℃, and the CO2 conversion was kept under the level of 0.9%.
文摘A S 2O 2- 8/ZrO 2 Al 2O 3 type solid superacid catalyst was prepared from ZrOCl 2·8H 2O, AlCl 3· 6H 2O and (NH 4) 2S 2O 8 by coprecipitation, maceration and calcination processes. Their crystal structures and acidities were determined by XRD and Hammett method, respectively. The activity of the catalyst was studied as function of Al 2O 3 content, calcination temperature and time in the esterification of acetic acid with butanol, and a conversion of 96 5% was obtained. The catalyst gave also higher yields in syntheses of ketals and acetals: cyclohexanone ethylene ketal(86 2%), acetophenone ethylene ketal(78 5%), acetylacetic ester ketal(88 5%), benzaldehyde glycol acetal(76 3%). The chemical structures of the products were confirmed by IR spectra.
文摘以纳米ZrO 、微米Al O 为原料,采用无压烧结方式制备了ZTA 复相陶瓷。结果表明:nano-ZrO 的 2 2 3 2加入有利于制备细晶ZTA 复相陶瓷。此外,nano-ZrO 的加入对 Al O 陶瓷的显微结构也产生影响,ZrO 颗粒以 2 2 3 2“晶内型”和晶界型两种形式存在。合理的配方组成及制备工艺有利于 Z r O 以四方亚稳相存在。Z r O 含量为 2 23 0 w t % 时,其四方相含量可达 6 9 %,有利于应力诱导相变增韧,该 Z T A 复相陶瓷的抗弯强度、断裂韧性分别达到 604MPa、6.87MPa·m1/2。