期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于渐进多粒度训练深度学习的矿物图像识别 被引量:3
1
作者 万成舟 季晓慧 +4 位作者 杨眉 何明跃 张招崇 曾姗 王玉柱 《地学前缘》 EI CAS CSCD 北大核心 2024年第4期112-118,共7页
近年来,随着深度学习在地学领域中的应用,矿物图像识别变得越来越重要。虽然已经有研究将深度学习应用于矿物图像识别,并取得了一定的成果,但在大规模矿物数据集上的识别准确率仍然有待进一步提高。不同矿物之间可能存在细微的形态、纹... 近年来,随着深度学习在地学领域中的应用,矿物图像识别变得越来越重要。虽然已经有研究将深度学习应用于矿物图像识别,并取得了一定的成果,但在大规模矿物数据集上的识别准确率仍然有待进一步提高。不同矿物之间可能存在细微的形态、纹理和颜色差异,符合细粒度识别算法特征,但以往的研究中很少有人采用细粒度方法进行矿物识别。所以本文提出了一种基于Next-ViT模型的细粒度矿物识别方法,通过引入渐进式多粒度训练拼图技术,实现对矿物图像的精确分类。首先采用Next-ViT模型作为特征提取器,该模型结合了Transformer结构和卷积神经网络的优势,能够提取到丰富的图像特征;接下来利用随机拼图生成器创建不同粒度级别的矿物拼图,这些拼图包含从细节到整体的多种信息。训练过程中采用渐进式多粒度训练策略,在训练的早期阶段,模型主要关注细粒度的特征,通过学习拼图中的细节信息来区分不同的矿物,随着训练的深入,模型逐渐将注意力转移到更大粒度级别的特征上,学习更加抽象和全局的信息。通过这种方式,模型能够充分利用不同粒度级别的信息,提高矿物识别的准确性。实验结果表明,该模型在常见的36种矿物数据集上取得了86.5%的准确率,有效地提高了矿物识别的准确率。这表明,细粒度识别方法对于矿物识别是有效的。 展开更多
关键词 矿物识别 深度学习 next-vit 细粒度识别 渐进式多粒度训练
在线阅读 下载PDF
基于改进 YOLOv5 的枸杞虫害检测 被引量:4
2
作者 杜丁健 高遵海 陈倬 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第10期1992-2000,共9页
为了检测复杂环境下枸杞的虫害情况,提出基于改进YOLOv5m的模型.以下一代视觉转换器(Next-ViT)作为骨干网络,提高模型的特征提取能力,使模型更加关注关键目标特征.在模型颈部增加自适应融合的上下文增强模块,增强模型对上下文信息的理... 为了检测复杂环境下枸杞的虫害情况,提出基于改进YOLOv5m的模型.以下一代视觉转换器(Next-ViT)作为骨干网络,提高模型的特征提取能力,使模型更加关注关键目标特征.在模型颈部增加自适应融合的上下文增强模块,增强模型对上下文信息的理解与处理能力,提高模型对小目标(蚜虫)的检测精度.将颈部网络中的C3模块替换为C3_Faster模块,减少模型占用量并进一步提高模型检测精度.实验结果表明,所提模型的准确率和召回率分别为97.0%、92.1%,平均精度均值为94.7%;相比于YOLOv5m,所提模型的平均精度均值提高了1.9个百分点,蚜虫的检测平均精度提高了9.4个百分点.对比不同模型的平均精度均值,所提模型比主流模型YOLOv7、YOLOX、DETR、EfficientDet-D1、Cascade R-CNN分别高1.6、1.6、2.8、3.5、1.0个百分点.所提模型在提高检测性能的同时,模型占用量也保持在合理范围内. 展开更多
关键词 枸杞虫害 深度学习 小目标检测 YOLOv5 下一代视觉转换器(next-vit)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部